"""
Javascript code printer

The JavascriptCodePrinter converts single SymPy expressions into single
Javascript expressions, using the functions defined in the Javascript
Math object where possible.

"""

from __future__ import annotations
from typing import Any

from sympy.core import S
from sympy.core.numbers import equal_valued
from sympy.printing.codeprinter import CodePrinter
from sympy.printing.precedence import precedence, PRECEDENCE


# dictionary mapping SymPy function to (argument_conditions, Javascript_function).
# Used in JavascriptCodePrinter._print_Function(self)
known_functions = {
    'Abs': 'Math.abs',
    'acos': 'Math.acos',
    'acosh': 'Math.acosh',
    'asin': 'Math.asin',
    'asinh': 'Math.asinh',
    'atan': 'Math.atan',
    'atan2': 'Math.atan2',
    'atanh': 'Math.atanh',
    'ceiling': 'Math.ceil',
    'cos': 'Math.cos',
    'cosh': 'Math.cosh',
    'exp': 'Math.exp',
    'floor': 'Math.floor',
    'log': 'Math.log',
    'Max': 'Math.max',
    'Min': 'Math.min',
    'sign': 'Math.sign',
    'sin': 'Math.sin',
    'sinh': 'Math.sinh',
    'tan': 'Math.tan',
    'tanh': 'Math.tanh',
}


class JavascriptCodePrinter(CodePrinter):
    """"A Printer to convert Python expressions to strings of JavaScript code
    """
    printmethod = '_javascript'
    language = 'JavaScript'

    _default_settings: dict[str, Any] = {
        'order': None,
        'full_prec': 'auto',
        'precision': 17,
        'user_functions': {},
        'human': True,
        'allow_unknown_functions': False,
        'contract': True,
    }

    def __init__(self, settings={}):
        CodePrinter.__init__(self, settings)
        self.known_functions = dict(known_functions)
        userfuncs = settings.get('user_functions', {})
        self.known_functions.update(userfuncs)

    def _rate_index_position(self, p):
        return p*5

    def _get_statement(self, codestring):
        return "%s;" % codestring

    def _get_comment(self, text):
        return "// {}".format(text)

    def _declare_number_const(self, name, value):
        return "var {} = {};".format(name, value.evalf(self._settings['precision']))

    def _format_code(self, lines):
        return self.indent_code(lines)

    def _traverse_matrix_indices(self, mat):
        rows, cols = mat.shape
        return ((i, j) for i in range(rows) for j in range(cols))

    def _get_loop_opening_ending(self, indices):
        open_lines = []
        close_lines = []
        loopstart = "for (var %(varble)s=%(start)s; %(varble)s<%(end)s; %(varble)s++){"
        for i in indices:
            # Javascript arrays start at 0 and end at dimension-1
            open_lines.append(loopstart % {
                'varble': self._print(i.label),
                'start': self._print(i.lower),
                'end': self._print(i.upper + 1)})
            close_lines.append("}")
        return open_lines, close_lines

    def _print_Pow(self, expr):
        PREC = precedence(expr)
        if equal_valued(expr.exp, -1):
            return '1/%s' % (self.parenthesize(expr.base, PREC))
        elif equal_valued(expr.exp, 0.5):
            return 'Math.sqrt(%s)' % self._print(expr.base)
        elif expr.exp == S.One/3:
            return 'Math.cbrt(%s)' % self._print(expr.base)
        else:
            return 'Math.pow(%s, %s)' % (self._print(expr.base),
                                 self._print(expr.exp))

    def _print_Rational(self, expr):
        p, q = int(expr.p), int(expr.q)
        return '%d/%d' % (p, q)

    def _print_Mod(self, expr):
        num, den = expr.args
        PREC = precedence(expr)
        snum, sden = [self.parenthesize(arg, PREC) for arg in expr.args]
        # % is remainder (same sign as numerator), not modulo (same sign as
        # denominator), in js. Hence, % only works as modulo if both numbers
        # have the same sign
        if (num.is_nonnegative and den.is_nonnegative or
            num.is_nonpositive and den.is_nonpositive):
            return f"{snum} % {sden}"
        return f"(({snum} % {sden}) + {sden}) % {sden}"

    def _print_Relational(self, expr):
        lhs_code = self._print(expr.lhs)
        rhs_code = self._print(expr.rhs)
        op = expr.rel_op
        return "{} {} {}".format(lhs_code, op, rhs_code)

    def _print_Indexed(self, expr):
        # calculate index for 1d array
        dims = expr.shape
        elem = S.Zero
        offset = S.One
        for i in reversed(range(expr.rank)):
            elem += expr.indices[i]*offset
            offset *= dims[i]
        return "%s[%s]" % (self._print(expr.base.label), self._print(elem))

    def _print_Idx(self, expr):
        return self._print(expr.label)

    def _print_Exp1(self, expr):
        return "Math.E"

    def _print_Pi(self, expr):
        return 'Math.PI'

    def _print_Infinity(self, expr):
        return 'Number.POSITIVE_INFINITY'

    def _print_NegativeInfinity(self, expr):
        return 'Number.NEGATIVE_INFINITY'

    def _print_Piecewise(self, expr):
        from sympy.codegen.ast import Assignment
        if expr.args[-1].cond != True:
            # We need the last conditional to be a True, otherwise the resulting
            # function may not return a result.
            raise ValueError("All Piecewise expressions must contain an "
                             "(expr, True) statement to be used as a default "
                             "condition. Without one, the generated "
                             "expression may not evaluate to anything under "
                             "some condition.")
        lines = []
        if expr.has(Assignment):
            for i, (e, c) in enumerate(expr.args):
                if i == 0:
                    lines.append("if (%s) {" % self._print(c))
                elif i == len(expr.args) - 1 and c == True:
                    lines.append("else {")
                else:
                    lines.append("else if (%s) {" % self._print(c))
                code0 = self._print(e)
                lines.append(code0)
                lines.append("}")
            return "\n".join(lines)
        else:
            # The piecewise was used in an expression, need to do inline
            # operators. This has the downside that inline operators will
            # not work for statements that span multiple lines (Matrix or
            # Indexed expressions).
            ecpairs = ["((%s) ? (\n%s\n)\n" % (self._print(c), self._print(e))
                    for e, c in expr.args[:-1]]
            last_line = ": (\n%s\n)" % self._print(expr.args[-1].expr)
            return ": ".join(ecpairs) + last_line + " ".join([")"*len(ecpairs)])

    def _print_MatrixElement(self, expr):
        return "{}[{}]".format(self.parenthesize(expr.parent,
            PRECEDENCE["Atom"], strict=True),
            expr.j + expr.i*expr.parent.shape[1])

    def indent_code(self, code):
        """Accepts a string of code or a list of code lines"""

        if isinstance(code, str):
            code_lines = self.indent_code(code.splitlines(True))
            return ''.join(code_lines)

        tab = "   "
        inc_token = ('{', '(', '{\n', '(\n')
        dec_token = ('}', ')')

        code = [ line.lstrip(' \t') for line in code ]

        increase = [ int(any(map(line.endswith, inc_token))) for line in code ]
        decrease = [ int(any(map(line.startswith, dec_token)))
                     for line in code ]

        pretty = []
        level = 0
        for n, line in enumerate(code):
            if line in ('', '\n'):
                pretty.append(line)
                continue
            level -= decrease[n]
            pretty.append("%s%s" % (tab*level, line))
            level += increase[n]
        return pretty


def jscode(expr, assign_to=None, **settings):
    """Converts an expr to a string of javascript code

    Parameters
    ==========

    expr : Expr
        A SymPy expression to be converted.
    assign_to : optional
        When given, the argument is used as the name of the variable to which
        the expression is assigned. Can be a string, ``Symbol``,
        ``MatrixSymbol``, or ``Indexed`` type. This is helpful in case of
        line-wrapping, or for expressions that generate multi-line statements.
    precision : integer, optional
        The precision for numbers such as pi [default=15].
    user_functions : dict, optional
        A dictionary where keys are ``FunctionClass`` instances and values are
        their string representations. Alternatively, the dictionary value can
        be a list of tuples i.e. [(argument_test, js_function_string)]. See
        below for examples.
    human : bool, optional
        If True, the result is a single string that may contain some constant
        declarations for the number symbols. If False, the same information is
        returned in a tuple of (symbols_to_declare, not_supported_functions,
        code_text). [default=True].
    contract: bool, optional
        If True, ``Indexed`` instances are assumed to obey tensor contraction
        rules and the corresponding nested loops over indices are generated.
        Setting contract=False will not generate loops, instead the user is
        responsible to provide values for the indices in the code.
        [default=True].

    Examples
    ========

    >>> from sympy import jscode, symbols, Rational, sin, ceiling, Abs
    >>> x, tau = symbols("x, tau")
    >>> jscode((2*tau)**Rational(7, 2))
    '8*Math.sqrt(2)*Math.pow(tau, 7/2)'
    >>> jscode(sin(x), assign_to="s")
    's = Math.sin(x);'

    Custom printing can be defined for certain types by passing a dictionary of
    "type" : "function" to the ``user_functions`` kwarg. Alternatively, the
    dictionary value can be a list of tuples i.e. [(argument_test,
    js_function_string)].

    >>> custom_functions = {
    ...   "ceiling": "CEIL",
    ...   "Abs": [(lambda x: not x.is_integer, "fabs"),
    ...           (lambda x: x.is_integer, "ABS")]
    ... }
    >>> jscode(Abs(x) + ceiling(x), user_functions=custom_functions)
    'fabs(x) + CEIL(x)'

    ``Piecewise`` expressions are converted into conditionals. If an
    ``assign_to`` variable is provided an if statement is created, otherwise
    the ternary operator is used. Note that if the ``Piecewise`` lacks a
    default term, represented by ``(expr, True)`` then an error will be thrown.
    This is to prevent generating an expression that may not evaluate to
    anything.

    >>> from sympy import Piecewise
    >>> expr = Piecewise((x + 1, x > 0), (x, True))
    >>> print(jscode(expr, tau))
    if (x > 0) {
       tau = x + 1;
    }
    else {
       tau = x;
    }

    Support for loops is provided through ``Indexed`` types. With
    ``contract=True`` these expressions will be turned into loops, whereas
    ``contract=False`` will just print the assignment expression that should be
    looped over:

    >>> from sympy import Eq, IndexedBase, Idx
    >>> len_y = 5
    >>> y = IndexedBase('y', shape=(len_y,))
    >>> t = IndexedBase('t', shape=(len_y,))
    >>> Dy = IndexedBase('Dy', shape=(len_y-1,))
    >>> i = Idx('i', len_y-1)
    >>> e=Eq(Dy[i], (y[i+1]-y[i])/(t[i+1]-t[i]))
    >>> jscode(e.rhs, assign_to=e.lhs, contract=False)
    'Dy[i] = (y[i + 1] - y[i])/(t[i + 1] - t[i]);'

    Matrices are also supported, but a ``MatrixSymbol`` of the same dimensions
    must be provided to ``assign_to``. Note that any expression that can be
    generated normally can also exist inside a Matrix:

    >>> from sympy import Matrix, MatrixSymbol
    >>> mat = Matrix([x**2, Piecewise((x + 1, x > 0), (x, True)), sin(x)])
    >>> A = MatrixSymbol('A', 3, 1)
    >>> print(jscode(mat, A))
    A[0] = Math.pow(x, 2);
    if (x > 0) {
       A[1] = x + 1;
    }
    else {
       A[1] = x;
    }
    A[2] = Math.sin(x);
    """

    return JavascriptCodePrinter(settings).doprint(expr, assign_to)


def print_jscode(expr, **settings):
    """Prints the Javascript representation of the given expression.

       See jscode for the meaning of the optional arguments.
    """
    print(jscode(expr, **settings))
