"""User-friendly public interface to polynomial functions. """


from functools import wraps, reduce
from operator import mul
from typing import Optional

from sympy.core import (
    S, Expr, Add, Tuple
)
from sympy.core.basic import Basic
from sympy.core.decorators import _sympifyit
from sympy.core.exprtools import Factors, factor_nc, factor_terms
from sympy.core.evalf import (
    pure_complex, evalf, fastlog, _evalf_with_bounded_error, quad_to_mpmath)
from sympy.core.function import Derivative
from sympy.core.mul import Mul, _keep_coeff
from sympy.core.numbers import ilcm, I, Integer, equal_valued
from sympy.core.relational import Relational, Equality
from sympy.core.sorting import ordered
from sympy.core.symbol import Dummy, Symbol
from sympy.core.sympify import sympify, _sympify
from sympy.core.traversal import preorder_traversal, bottom_up
from sympy.logic.boolalg import BooleanAtom
from sympy.polys import polyoptions as options
from sympy.polys.constructor import construct_domain
from sympy.polys.domains import FF, QQ, ZZ
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.fglmtools import matrix_fglm
from sympy.polys.groebnertools import groebner as _groebner
from sympy.polys.monomials import Monomial
from sympy.polys.orderings import monomial_key
from sympy.polys.polyclasses import DMP, DMF, ANP
from sympy.polys.polyerrors import (
    OperationNotSupported, DomainError,
    CoercionFailed, UnificationFailed,
    GeneratorsNeeded, PolynomialError,
    MultivariatePolynomialError,
    ExactQuotientFailed,
    PolificationFailed,
    ComputationFailed,
    GeneratorsError,
)
from sympy.polys.polyutils import (
    basic_from_dict,
    _sort_gens,
    _unify_gens,
    _dict_reorder,
    _dict_from_expr,
    _parallel_dict_from_expr,
)
from sympy.polys.rationaltools import together
from sympy.polys.rootisolation import dup_isolate_real_roots_list
from sympy.utilities import group, public, filldedent
from sympy.utilities.exceptions import sympy_deprecation_warning
from sympy.utilities.iterables import iterable, sift


# Required to avoid errors
import sympy.polys

import mpmath
from mpmath.libmp.libhyper import NoConvergence



def _polifyit(func):
    @wraps(func)
    def wrapper(f, g):
        g = _sympify(g)
        if isinstance(g, Poly):
            return func(f, g)
        elif isinstance(g, Expr):
            try:
                g = f.from_expr(g, *f.gens)
            except PolynomialError:
                if g.is_Matrix:
                    return NotImplemented
                expr_method = getattr(f.as_expr(), func.__name__)
                result = expr_method(g)
                if result is not NotImplemented:
                    sympy_deprecation_warning(
                        """
                        Mixing Poly with non-polynomial expressions in binary
                        operations is deprecated. Either explicitly convert
                        the non-Poly operand to a Poly with as_poly() or
                        convert the Poly to an Expr with as_expr().
                        """,
                        deprecated_since_version="1.6",
                        active_deprecations_target="deprecated-poly-nonpoly-binary-operations",
                    )
                return result
            else:
                return func(f, g)
        else:
            return NotImplemented
    return wrapper



@public
class Poly(Basic):
    """
    Generic class for representing and operating on polynomial expressions.

    See :ref:`polys-docs` for general documentation.

    Poly is a subclass of Basic rather than Expr but instances can be
    converted to Expr with the :py:meth:`~.Poly.as_expr` method.

    .. deprecated:: 1.6

       Combining Poly with non-Poly objects in binary operations is
       deprecated. Explicitly convert both objects to either Poly or Expr
       first. See :ref:`deprecated-poly-nonpoly-binary-operations`.

    Examples
    ========

    >>> from sympy import Poly
    >>> from sympy.abc import x, y

    Create a univariate polynomial:

    >>> Poly(x*(x**2 + x - 1)**2)
    Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')

    Create a univariate polynomial with specific domain:

    >>> from sympy import sqrt
    >>> Poly(x**2 + 2*x + sqrt(3), domain='R')
    Poly(1.0*x**2 + 2.0*x + 1.73205080756888, x, domain='RR')

    Create a multivariate polynomial:

    >>> Poly(y*x**2 + x*y + 1)
    Poly(x**2*y + x*y + 1, x, y, domain='ZZ')

    Create a univariate polynomial, where y is a constant:

    >>> Poly(y*x**2 + x*y + 1,x)
    Poly(y*x**2 + y*x + 1, x, domain='ZZ[y]')

    You can evaluate the above polynomial as a function of y:

    >>> Poly(y*x**2 + x*y + 1,x).eval(2)
    6*y + 1

    See Also
    ========

    sympy.core.expr.Expr

    """

    __slots__ = ('rep', 'gens')

    is_commutative = True
    is_Poly = True
    _op_priority = 10.001

    def __new__(cls, rep, *gens, **args):
        """Create a new polynomial instance out of something useful. """
        opt = options.build_options(gens, args)

        if 'order' in opt:
            raise NotImplementedError("'order' keyword is not implemented yet")

        if isinstance(rep, (DMP, DMF, ANP, DomainElement)):
            return cls._from_domain_element(rep, opt)
        elif iterable(rep, exclude=str):
            if isinstance(rep, dict):
                return cls._from_dict(rep, opt)
            else:
                return cls._from_list(list(rep), opt)
        else:
            rep = sympify(rep)

            if rep.is_Poly:
                return cls._from_poly(rep, opt)
            else:
                return cls._from_expr(rep, opt)

    # Poly does not pass its args to Basic.__new__ to be stored in _args so we
    # have to emulate them here with an args property that derives from rep
    # and gens which are instance attributes. This also means we need to
    # define _hashable_content. The _hashable_content is rep and gens but args
    # uses expr instead of rep (expr is the Basic version of rep). Passing
    # expr in args means that Basic methods like subs should work. Using rep
    # otherwise means that Poly can remain more efficient than Basic by
    # avoiding creating a Basic instance just to be hashable.

    @classmethod
    def new(cls, rep, *gens):
        """Construct :class:`Poly` instance from raw representation. """
        if not isinstance(rep, DMP):
            raise PolynomialError(
                "invalid polynomial representation: %s" % rep)
        elif rep.lev != len(gens) - 1:
            raise PolynomialError("invalid arguments: %s, %s" % (rep, gens))

        obj = Basic.__new__(cls)
        obj.rep = rep
        obj.gens = gens

        return obj

    @property
    def expr(self):
        return basic_from_dict(self.rep.to_sympy_dict(), *self.gens)

    @property
    def args(self):
        return (self.expr,) + self.gens

    def _hashable_content(self):
        return (self.rep,) + self.gens

    @classmethod
    def from_dict(cls, rep, *gens, **args):
        """Construct a polynomial from a ``dict``. """
        opt = options.build_options(gens, args)
        return cls._from_dict(rep, opt)

    @classmethod
    def from_list(cls, rep, *gens, **args):
        """Construct a polynomial from a ``list``. """
        opt = options.build_options(gens, args)
        return cls._from_list(rep, opt)

    @classmethod
    def from_poly(cls, rep, *gens, **args):
        """Construct a polynomial from a polynomial. """
        opt = options.build_options(gens, args)
        return cls._from_poly(rep, opt)

    @classmethod
    def from_expr(cls, rep, *gens, **args):
        """Construct a polynomial from an expression. """
        opt = options.build_options(gens, args)
        return cls._from_expr(rep, opt)

    @classmethod
    def _from_dict(cls, rep, opt):
        """Construct a polynomial from a ``dict``. """
        gens = opt.gens

        if not gens:
            raise GeneratorsNeeded(
                "Cannot initialize from 'dict' without generators")

        level = len(gens) - 1
        domain = opt.domain

        if domain is None:
            domain, rep = construct_domain(rep, opt=opt)
        else:
            for monom, coeff in rep.items():
                rep[monom] = domain.convert(coeff)

        return cls.new(DMP.from_dict(rep, level, domain), *gens)

    @classmethod
    def _from_list(cls, rep, opt):
        """Construct a polynomial from a ``list``. """
        gens = opt.gens

        if not gens:
            raise GeneratorsNeeded(
                "Cannot initialize from 'list' without generators")
        elif len(gens) != 1:
            raise MultivariatePolynomialError(
                "'list' representation not supported")

        level = len(gens) - 1
        domain = opt.domain

        if domain is None:
            domain, rep = construct_domain(rep, opt=opt)
        else:
            rep = list(map(domain.convert, rep))

        return cls.new(DMP.from_list(rep, level, domain), *gens)

    @classmethod
    def _from_poly(cls, rep, opt):
        """Construct a polynomial from a polynomial. """
        if cls != rep.__class__:
            rep = cls.new(rep.rep, *rep.gens)

        gens = opt.gens
        field = opt.field
        domain = opt.domain

        if gens and rep.gens != gens:
            if set(rep.gens) != set(gens):
                return cls._from_expr(rep.as_expr(), opt)
            else:
                rep = rep.reorder(*gens)

        if 'domain' in opt and domain:
            rep = rep.set_domain(domain)
        elif field is True:
            rep = rep.to_field()

        return rep

    @classmethod
    def _from_expr(cls, rep, opt):
        """Construct a polynomial from an expression. """
        rep, opt = _dict_from_expr(rep, opt)
        return cls._from_dict(rep, opt)

    @classmethod
    def _from_domain_element(cls, rep, opt):
        gens = opt.gens
        domain = opt.domain

        level = len(gens) - 1
        rep = [domain.convert(rep)]

        return cls.new(DMP.from_list(rep, level, domain), *gens)

    def __hash__(self):
        return super().__hash__()

    @property
    def free_symbols(self):
        """
        Free symbols of a polynomial expression.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x**2 + 1).free_symbols
        {x}
        >>> Poly(x**2 + y).free_symbols
        {x, y}
        >>> Poly(x**2 + y, x).free_symbols
        {x, y}
        >>> Poly(x**2 + y, x, z).free_symbols
        {x, y}

        """
        symbols = set()
        gens = self.gens
        for i in range(len(gens)):
            for monom in self.monoms():
                if monom[i]:
                    symbols |= gens[i].free_symbols
                    break

        return symbols | self.free_symbols_in_domain

    @property
    def free_symbols_in_domain(self):
        """
        Free symbols of the domain of ``self``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 1).free_symbols_in_domain
        set()
        >>> Poly(x**2 + y).free_symbols_in_domain
        set()
        >>> Poly(x**2 + y, x).free_symbols_in_domain
        {y}

        """
        domain, symbols = self.rep.dom, set()

        if domain.is_Composite:
            for gen in domain.symbols:
                symbols |= gen.free_symbols
        elif domain.is_EX:
            for coeff in self.coeffs():
                symbols |= coeff.free_symbols

        return symbols

    @property
    def gen(self):
        """
        Return the principal generator.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).gen
        x

        """
        return self.gens[0]

    @property
    def domain(self):
        """Get the ground domain of a :py:class:`~.Poly`

        Returns
        =======

        :py:class:`~.Domain`:
            Ground domain of the :py:class:`~.Poly`.

        Examples
        ========

        >>> from sympy import Poly, Symbol
        >>> x = Symbol('x')
        >>> p = Poly(x**2 + x)
        >>> p
        Poly(x**2 + x, x, domain='ZZ')
        >>> p.domain
        ZZ
        """
        return self.get_domain()

    @property
    def zero(self):
        """Return zero polynomial with ``self``'s properties. """
        return self.new(self.rep.zero(self.rep.lev, self.rep.dom), *self.gens)

    @property
    def one(self):
        """Return one polynomial with ``self``'s properties. """
        return self.new(self.rep.one(self.rep.lev, self.rep.dom), *self.gens)

    @property
    def unit(self):
        """Return unit polynomial with ``self``'s properties. """
        return self.new(self.rep.unit(self.rep.lev, self.rep.dom), *self.gens)

    def unify(f, g):
        """
        Make ``f`` and ``g`` belong to the same domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f, g = Poly(x/2 + 1), Poly(2*x + 1)

        >>> f
        Poly(1/2*x + 1, x, domain='QQ')
        >>> g
        Poly(2*x + 1, x, domain='ZZ')

        >>> F, G = f.unify(g)

        >>> F
        Poly(1/2*x + 1, x, domain='QQ')
        >>> G
        Poly(2*x + 1, x, domain='QQ')

        """
        _, per, F, G = f._unify(g)
        return per(F), per(G)

    def _unify(f, g):
        g = sympify(g)

        if not g.is_Poly:
            try:
                return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
            except CoercionFailed:
                raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if isinstance(f.rep, DMP) and isinstance(g.rep, DMP):
            gens = _unify_gens(f.gens, g.gens)

            dom, lev = f.rep.dom.unify(g.rep.dom, gens), len(gens) - 1

            if f.gens != gens:
                f_monoms, f_coeffs = _dict_reorder(
                    f.rep.to_dict(), f.gens, gens)

                if f.rep.dom != dom:
                    f_coeffs = [dom.convert(c, f.rep.dom) for c in f_coeffs]

                F = DMP(dict(list(zip(f_monoms, f_coeffs))), dom, lev)
            else:
                F = f.rep.convert(dom)

            if g.gens != gens:
                g_monoms, g_coeffs = _dict_reorder(
                    g.rep.to_dict(), g.gens, gens)

                if g.rep.dom != dom:
                    g_coeffs = [dom.convert(c, g.rep.dom) for c in g_coeffs]

                G = DMP(dict(list(zip(g_monoms, g_coeffs))), dom, lev)
            else:
                G = g.rep.convert(dom)
        else:
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        cls = f.__class__

        def per(rep, dom=dom, gens=gens, remove=None):
            if remove is not None:
                gens = gens[:remove] + gens[remove + 1:]

                if not gens:
                    return dom.to_sympy(rep)

            return cls.new(rep, *gens)

        return dom, per, F, G

    def per(f, rep, gens=None, remove=None):
        """
        Create a Poly out of the given representation.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x, y

        >>> from sympy.polys.polyclasses import DMP

        >>> a = Poly(x**2 + 1)

        >>> a.per(DMP([ZZ(1), ZZ(1)], ZZ), gens=[y])
        Poly(y + 1, y, domain='ZZ')

        """
        if gens is None:
            gens = f.gens

        if remove is not None:
            gens = gens[:remove] + gens[remove + 1:]

            if not gens:
                return f.rep.dom.to_sympy(rep)

        return f.__class__.new(rep, *gens)

    def set_domain(f, domain):
        """Set the ground domain of ``f``. """
        opt = options.build_options(f.gens, {'domain': domain})
        return f.per(f.rep.convert(opt.domain))

    def get_domain(f):
        """Get the ground domain of ``f``. """
        return f.rep.dom

    def set_modulus(f, modulus):
        """
        Set the modulus of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(5*x**2 + 2*x - 1, x).set_modulus(2)
        Poly(x**2 + 1, x, modulus=2)

        """
        modulus = options.Modulus.preprocess(modulus)
        return f.set_domain(FF(modulus))

    def get_modulus(f):
        """
        Get the modulus of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, modulus=2).get_modulus()
        2

        """
        domain = f.get_domain()

        if domain.is_FiniteField:
            return Integer(domain.characteristic())
        else:
            raise PolynomialError("not a polynomial over a Galois field")

    def _eval_subs(f, old, new):
        """Internal implementation of :func:`subs`. """
        if old in f.gens:
            if new.is_number:
                return f.eval(old, new)
            else:
                try:
                    return f.replace(old, new)
                except PolynomialError:
                    pass

        return f.as_expr().subs(old, new)

    def exclude(f):
        """
        Remove unnecessary generators from ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import a, b, c, d, x

        >>> Poly(a + x, a, b, c, d, x).exclude()
        Poly(a + x, a, x, domain='ZZ')

        """
        J, new = f.rep.exclude()
        gens = [gen for j, gen in enumerate(f.gens) if j not in J]

        return f.per(new, gens=gens)

    def replace(f, x, y=None, **_ignore):
        # XXX this does not match Basic's signature
        """
        Replace ``x`` with ``y`` in generators list.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 1, x).replace(x, y)
        Poly(y**2 + 1, y, domain='ZZ')

        """
        if y is None:
            if f.is_univariate:
                x, y = f.gen, x
            else:
                raise PolynomialError(
                    "syntax supported only in univariate case")

        if x == y or x not in f.gens:
            return f

        if x in f.gens and y not in f.gens:
            dom = f.get_domain()

            if not dom.is_Composite or y not in dom.symbols:
                gens = list(f.gens)
                gens[gens.index(x)] = y
                return f.per(f.rep, gens=gens)

        raise PolynomialError("Cannot replace %s with %s in %s" % (x, y, f))

    def match(f, *args, **kwargs):
        """Match expression from Poly. See Basic.match()"""
        return f.as_expr().match(*args, **kwargs)

    def reorder(f, *gens, **args):
        """
        Efficiently apply new order of generators.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x*y**2, x, y).reorder(y, x)
        Poly(y**2*x + x**2, y, x, domain='ZZ')

        """
        opt = options.Options((), args)

        if not gens:
            gens = _sort_gens(f.gens, opt=opt)
        elif set(f.gens) != set(gens):
            raise PolynomialError(
                "generators list can differ only up to order of elements")

        rep = dict(list(zip(*_dict_reorder(f.rep.to_dict(), f.gens, gens))))

        return f.per(DMP(rep, f.rep.dom, len(gens) - 1), gens=gens)

    def ltrim(f, gen):
        """
        Remove dummy generators from ``f`` that are to the left of
        specified ``gen`` in the generators as ordered. When ``gen``
        is an integer, it refers to the generator located at that
        position within the tuple of generators of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(y**2 + y*z**2, x, y, z).ltrim(y)
        Poly(y**2 + y*z**2, y, z, domain='ZZ')
        >>> Poly(z, x, y, z).ltrim(-1)
        Poly(z, z, domain='ZZ')

        """
        rep = f.as_dict(native=True)
        j = f._gen_to_level(gen)

        terms = {}

        for monom, coeff in rep.items():

            if any(monom[:j]):
                # some generator is used in the portion to be trimmed
                raise PolynomialError("Cannot left trim %s" % f)

            terms[monom[j:]] = coeff

        gens = f.gens[j:]

        return f.new(DMP.from_dict(terms, len(gens) - 1, f.rep.dom), *gens)

    def has_only_gens(f, *gens):
        """
        Return ``True`` if ``Poly(f, *gens)`` retains ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x*y + 1, x, y, z).has_only_gens(x, y)
        True
        >>> Poly(x*y + z, x, y, z).has_only_gens(x, y)
        False

        """
        indices = set()

        for gen in gens:
            try:
                index = f.gens.index(gen)
            except ValueError:
                raise GeneratorsError(
                    "%s doesn't have %s as generator" % (f, gen))
            else:
                indices.add(index)

        for monom in f.monoms():
            for i, elt in enumerate(monom):
                if i not in indices and elt:
                    return False

        return True

    def to_ring(f):
        """
        Make the ground domain a ring.

        Examples
        ========

        >>> from sympy import Poly, QQ
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, domain=QQ).to_ring()
        Poly(x**2 + 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'to_ring'):
            result = f.rep.to_ring()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'to_ring')

        return f.per(result)

    def to_field(f):
        """
        Make the ground domain a field.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x, domain=ZZ).to_field()
        Poly(x**2 + 1, x, domain='QQ')

        """
        if hasattr(f.rep, 'to_field'):
            result = f.rep.to_field()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'to_field')

        return f.per(result)

    def to_exact(f):
        """
        Make the ground domain exact.

        Examples
        ========

        >>> from sympy import Poly, RR
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1.0, x, domain=RR).to_exact()
        Poly(x**2 + 1, x, domain='QQ')

        """
        if hasattr(f.rep, 'to_exact'):
            result = f.rep.to_exact()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'to_exact')

        return f.per(result)

    def retract(f, field=None):
        """
        Recalculate the ground domain of a polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**2 + 1, x, domain='QQ[y]')
        >>> f
        Poly(x**2 + 1, x, domain='QQ[y]')

        >>> f.retract()
        Poly(x**2 + 1, x, domain='ZZ')
        >>> f.retract(field=True)
        Poly(x**2 + 1, x, domain='QQ')

        """
        dom, rep = construct_domain(f.as_dict(zero=True),
            field=field, composite=f.domain.is_Composite or None)
        return f.from_dict(rep, f.gens, domain=dom)

    def slice(f, x, m, n=None):
        """Take a continuous subsequence of terms of ``f``. """
        if n is None:
            j, m, n = 0, x, m
        else:
            j = f._gen_to_level(x)

        m, n = int(m), int(n)

        if hasattr(f.rep, 'slice'):
            result = f.rep.slice(m, n, j)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'slice')

        return f.per(result)

    def coeffs(f, order=None):
        """
        Returns all non-zero coefficients from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x + 3, x).coeffs()
        [1, 2, 3]

        See Also
        ========
        all_coeffs
        coeff_monomial
        nth

        """
        return [f.rep.dom.to_sympy(c) for c in f.rep.coeffs(order=order)]

    def monoms(f, order=None):
        """
        Returns all non-zero monomials from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).monoms()
        [(2, 0), (1, 2), (1, 1), (0, 1)]

        See Also
        ========
        all_monoms

        """
        return f.rep.monoms(order=order)

    def terms(f, order=None):
        """
        Returns all non-zero terms from ``f`` in lex order.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 + x*y + 3*y, x, y).terms()
        [((2, 0), 1), ((1, 2), 2), ((1, 1), 1), ((0, 1), 3)]

        See Also
        ========
        all_terms

        """
        return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.terms(order=order)]

    def all_coeffs(f):
        """
        Returns all coefficients from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_coeffs()
        [1, 0, 2, -1]

        """
        return [f.rep.dom.to_sympy(c) for c in f.rep.all_coeffs()]

    def all_monoms(f):
        """
        Returns all monomials from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_monoms()
        [(3,), (2,), (1,), (0,)]

        See Also
        ========
        all_terms

        """
        return f.rep.all_monoms()

    def all_terms(f):
        """
        Returns all terms from a univariate polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x - 1, x).all_terms()
        [((3,), 1), ((2,), 0), ((1,), 2), ((0,), -1)]

        """
        return [(m, f.rep.dom.to_sympy(c)) for m, c in f.rep.all_terms()]

    def termwise(f, func, *gens, **args):
        """
        Apply a function to all terms of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> def func(k, coeff):
        ...     k = k[0]
        ...     return coeff//10**(2-k)

        >>> Poly(x**2 + 20*x + 400).termwise(func)
        Poly(x**2 + 2*x + 4, x, domain='ZZ')

        """
        terms = {}

        for monom, coeff in f.terms():
            result = func(monom, coeff)

            if isinstance(result, tuple):
                monom, coeff = result
            else:
                coeff = result

            if coeff:
                if monom not in terms:
                    terms[monom] = coeff
                else:
                    raise PolynomialError(
                        "%s monomial was generated twice" % monom)

        return f.from_dict(terms, *(gens or f.gens), **args)

    def length(f):
        """
        Returns the number of non-zero terms in ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 2*x - 1).length()
        3

        """
        return len(f.as_dict())

    def as_dict(f, native=False, zero=False):
        """
        Switch to a ``dict`` representation.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x*y**2 - y, x, y).as_dict()
        {(0, 1): -1, (1, 2): 2, (2, 0): 1}

        """
        if native:
            return f.rep.to_dict(zero=zero)
        else:
            return f.rep.to_sympy_dict(zero=zero)

    def as_list(f, native=False):
        """Switch to a ``list`` representation. """
        if native:
            return f.rep.to_list()
        else:
            return f.rep.to_sympy_list()

    def as_expr(f, *gens):
        """
        Convert a Poly instance to an Expr instance.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2 + 2*x*y**2 - y, x, y)

        >>> f.as_expr()
        x**2 + 2*x*y**2 - y
        >>> f.as_expr({x: 5})
        10*y**2 - y + 25
        >>> f.as_expr(5, 6)
        379

        """
        if not gens:
            return f.expr

        if len(gens) == 1 and isinstance(gens[0], dict):
            mapping = gens[0]
            gens = list(f.gens)

            for gen, value in mapping.items():
                try:
                    index = gens.index(gen)
                except ValueError:
                    raise GeneratorsError(
                        "%s doesn't have %s as generator" % (f, gen))
                else:
                    gens[index] = value

        return basic_from_dict(f.rep.to_sympy_dict(), *gens)

    def as_poly(self, *gens, **args):
        """Converts ``self`` to a polynomial or returns ``None``.

        >>> from sympy import sin
        >>> from sympy.abc import x, y

        >>> print((x**2 + x*y).as_poly())
        Poly(x**2 + x*y, x, y, domain='ZZ')

        >>> print((x**2 + x*y).as_poly(x, y))
        Poly(x**2 + x*y, x, y, domain='ZZ')

        >>> print((x**2 + sin(y)).as_poly(x, y))
        None

        """
        try:
            poly = Poly(self, *gens, **args)

            if not poly.is_Poly:
                return None
            else:
                return poly
        except PolynomialError:
            return None

    def lift(f):
        """
        Convert algebraic coefficients to rationals.

        Examples
        ========

        >>> from sympy import Poly, I
        >>> from sympy.abc import x

        >>> Poly(x**2 + I*x + 1, x, extension=I).lift()
        Poly(x**4 + 3*x**2 + 1, x, domain='QQ')

        """
        if hasattr(f.rep, 'lift'):
            result = f.rep.lift()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'lift')

        return f.per(result)

    def deflate(f):
        """
        Reduce degree of ``f`` by mapping ``x_i**m`` to ``y_i``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**6*y**2 + x**3 + 1, x, y).deflate()
        ((3, 2), Poly(x**2*y + x + 1, x, y, domain='ZZ'))

        """
        if hasattr(f.rep, 'deflate'):
            J, result = f.rep.deflate()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'deflate')

        return J, f.per(result)

    def inject(f, front=False):
        """
        Inject ground domain generators into ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x)

        >>> f.inject()
        Poly(x**2*y + x*y**3 + x*y + 1, x, y, domain='ZZ')
        >>> f.inject(front=True)
        Poly(y**3*x + y*x**2 + y*x + 1, y, x, domain='ZZ')

        """
        dom = f.rep.dom

        if dom.is_Numerical:
            return f
        elif not dom.is_Poly:
            raise DomainError("Cannot inject generators over %s" % dom)

        if hasattr(f.rep, 'inject'):
            result = f.rep.inject(front=front)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'inject')

        if front:
            gens = dom.symbols + f.gens
        else:
            gens = f.gens + dom.symbols

        return f.new(result, *gens)

    def eject(f, *gens):
        """
        Eject selected generators into the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2*y + x*y**3 + x*y + 1, x, y)

        >>> f.eject(x)
        Poly(x*y**3 + (x**2 + x)*y + 1, y, domain='ZZ[x]')
        >>> f.eject(y)
        Poly(y*x**2 + (y**3 + y)*x + 1, x, domain='ZZ[y]')

        """
        dom = f.rep.dom

        if not dom.is_Numerical:
            raise DomainError("Cannot eject generators over %s" % dom)

        k = len(gens)

        if f.gens[:k] == gens:
            _gens, front = f.gens[k:], True
        elif f.gens[-k:] == gens:
            _gens, front = f.gens[:-k], False
        else:
            raise NotImplementedError(
                "can only eject front or back generators")

        dom = dom.inject(*gens)

        if hasattr(f.rep, 'eject'):
            result = f.rep.eject(dom, front=front)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'eject')

        return f.new(result, *_gens)

    def terms_gcd(f):
        """
        Remove GCD of terms from the polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**6*y**2 + x**3*y, x, y).terms_gcd()
        ((3, 1), Poly(x**3*y + 1, x, y, domain='ZZ'))

        """
        if hasattr(f.rep, 'terms_gcd'):
            J, result = f.rep.terms_gcd()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'terms_gcd')

        return J, f.per(result)

    def add_ground(f, coeff):
        """
        Add an element of the ground domain to ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).add_ground(2)
        Poly(x + 3, x, domain='ZZ')

        """
        if hasattr(f.rep, 'add_ground'):
            result = f.rep.add_ground(coeff)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'add_ground')

        return f.per(result)

    def sub_ground(f, coeff):
        """
        Subtract an element of the ground domain from ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).sub_ground(2)
        Poly(x - 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'sub_ground'):
            result = f.rep.sub_ground(coeff)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sub_ground')

        return f.per(result)

    def mul_ground(f, coeff):
        """
        Multiply ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 1).mul_ground(2)
        Poly(2*x + 2, x, domain='ZZ')

        """
        if hasattr(f.rep, 'mul_ground'):
            result = f.rep.mul_ground(coeff)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'mul_ground')

        return f.per(result)

    def quo_ground(f, coeff):
        """
        Quotient of ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x + 4).quo_ground(2)
        Poly(x + 2, x, domain='ZZ')

        >>> Poly(2*x + 3).quo_ground(2)
        Poly(x + 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'quo_ground'):
            result = f.rep.quo_ground(coeff)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'quo_ground')

        return f.per(result)

    def exquo_ground(f, coeff):
        """
        Exact quotient of ``f`` by a an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x + 4).exquo_ground(2)
        Poly(x + 2, x, domain='ZZ')

        >>> Poly(2*x + 3).exquo_ground(2)
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2 does not divide 3 in ZZ

        """
        if hasattr(f.rep, 'exquo_ground'):
            result = f.rep.exquo_ground(coeff)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'exquo_ground')

        return f.per(result)

    def abs(f):
        """
        Make all coefficients in ``f`` positive.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).abs()
        Poly(x**2 + 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'abs'):
            result = f.rep.abs()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'abs')

        return f.per(result)

    def neg(f):
        """
        Negate all coefficients in ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).neg()
        Poly(-x**2 + 1, x, domain='ZZ')

        >>> -Poly(x**2 - 1, x)
        Poly(-x**2 + 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'neg'):
            result = f.rep.neg()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'neg')

        return f.per(result)

    def add(f, g):
        """
        Add two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).add(Poly(x - 2, x))
        Poly(x**2 + x - 1, x, domain='ZZ')

        >>> Poly(x**2 + 1, x) + Poly(x - 2, x)
        Poly(x**2 + x - 1, x, domain='ZZ')

        """
        g = sympify(g)

        if not g.is_Poly:
            return f.add_ground(g)

        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'add'):
            result = F.add(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'add')

        return per(result)

    def sub(f, g):
        """
        Subtract two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).sub(Poly(x - 2, x))
        Poly(x**2 - x + 3, x, domain='ZZ')

        >>> Poly(x**2 + 1, x) - Poly(x - 2, x)
        Poly(x**2 - x + 3, x, domain='ZZ')

        """
        g = sympify(g)

        if not g.is_Poly:
            return f.sub_ground(g)

        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'sub'):
            result = F.sub(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sub')

        return per(result)

    def mul(f, g):
        """
        Multiply two polynomials ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).mul(Poly(x - 2, x))
        Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')

        >>> Poly(x**2 + 1, x)*Poly(x - 2, x)
        Poly(x**3 - 2*x**2 + x - 2, x, domain='ZZ')

        """
        g = sympify(g)

        if not g.is_Poly:
            return f.mul_ground(g)

        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'mul'):
            result = F.mul(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'mul')

        return per(result)

    def sqr(f):
        """
        Square a polynomial ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x - 2, x).sqr()
        Poly(x**2 - 4*x + 4, x, domain='ZZ')

        >>> Poly(x - 2, x)**2
        Poly(x**2 - 4*x + 4, x, domain='ZZ')

        """
        if hasattr(f.rep, 'sqr'):
            result = f.rep.sqr()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sqr')

        return f.per(result)

    def pow(f, n):
        """
        Raise ``f`` to a non-negative power ``n``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x - 2, x).pow(3)
        Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')

        >>> Poly(x - 2, x)**3
        Poly(x**3 - 6*x**2 + 12*x - 8, x, domain='ZZ')

        """
        n = int(n)

        if hasattr(f.rep, 'pow'):
            result = f.rep.pow(n)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'pow')

        return f.per(result)

    def pdiv(f, g):
        """
        Polynomial pseudo-division of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).pdiv(Poly(2*x - 4, x))
        (Poly(2*x + 4, x, domain='ZZ'), Poly(20, x, domain='ZZ'))

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'pdiv'):
            q, r = F.pdiv(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'pdiv')

        return per(q), per(r)

    def prem(f, g):
        """
        Polynomial pseudo-remainder of ``f`` by ``g``.

        Caveat: The function prem(f, g, x) can be safely used to compute
          in Z[x] _only_ subresultant polynomial remainder sequences (prs's).

          To safely compute Euclidean and Sturmian prs's in Z[x]
          employ anyone of the corresponding functions found in
          the module sympy.polys.subresultants_qq_zz. The functions
          in the module with suffix _pg compute prs's in Z[x] employing
          rem(f, g, x), whereas the functions with suffix _amv
          compute prs's in Z[x] employing rem_z(f, g, x).

          The function rem_z(f, g, x) differs from prem(f, g, x) in that
          to compute the remainder polynomials in Z[x] it premultiplies
          the divident times the absolute value of the leading coefficient
          of the divisor raised to the power degree(f, x) - degree(g, x) + 1.


        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).prem(Poly(2*x - 4, x))
        Poly(20, x, domain='ZZ')

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'prem'):
            result = F.prem(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'prem')

        return per(result)

    def pquo(f, g):
        """
        Polynomial pseudo-quotient of ``f`` by ``g``.

        See the Caveat note in the function prem(f, g).

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).pquo(Poly(2*x - 4, x))
        Poly(2*x + 4, x, domain='ZZ')

        >>> Poly(x**2 - 1, x).pquo(Poly(2*x - 2, x))
        Poly(2*x + 2, x, domain='ZZ')

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'pquo'):
            result = F.pquo(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'pquo')

        return per(result)

    def pexquo(f, g):
        """
        Polynomial exact pseudo-quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).pexquo(Poly(2*x - 2, x))
        Poly(2*x + 2, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).pexquo(Poly(2*x - 4, x))
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'pexquo'):
            try:
                result = F.pexquo(G)
            except ExactQuotientFailed as exc:
                raise exc.new(f.as_expr(), g.as_expr())
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'pexquo')

        return per(result)

    def div(f, g, auto=True):
        """
        Polynomial division with remainder of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x))
        (Poly(1/2*x + 1, x, domain='QQ'), Poly(5, x, domain='QQ'))

        >>> Poly(x**2 + 1, x).div(Poly(2*x - 4, x), auto=False)
        (Poly(0, x, domain='ZZ'), Poly(x**2 + 1, x, domain='ZZ'))

        """
        dom, per, F, G = f._unify(g)
        retract = False

        if auto and dom.is_Ring and not dom.is_Field:
            F, G = F.to_field(), G.to_field()
            retract = True

        if hasattr(f.rep, 'div'):
            q, r = F.div(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'div')

        if retract:
            try:
                Q, R = q.to_ring(), r.to_ring()
            except CoercionFailed:
                pass
            else:
                q, r = Q, R

        return per(q), per(r)

    def rem(f, g, auto=True):
        """
        Computes the polynomial remainder of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x))
        Poly(5, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).rem(Poly(2*x - 4, x), auto=False)
        Poly(x**2 + 1, x, domain='ZZ')

        """
        dom, per, F, G = f._unify(g)
        retract = False

        if auto and dom.is_Ring and not dom.is_Field:
            F, G = F.to_field(), G.to_field()
            retract = True

        if hasattr(f.rep, 'rem'):
            r = F.rem(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'rem')

        if retract:
            try:
                r = r.to_ring()
            except CoercionFailed:
                pass

        return per(r)

    def quo(f, g, auto=True):
        """
        Computes polynomial quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).quo(Poly(2*x - 4, x))
        Poly(1/2*x + 1, x, domain='QQ')

        >>> Poly(x**2 - 1, x).quo(Poly(x - 1, x))
        Poly(x + 1, x, domain='ZZ')

        """
        dom, per, F, G = f._unify(g)
        retract = False

        if auto and dom.is_Ring and not dom.is_Field:
            F, G = F.to_field(), G.to_field()
            retract = True

        if hasattr(f.rep, 'quo'):
            q = F.quo(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'quo')

        if retract:
            try:
                q = q.to_ring()
            except CoercionFailed:
                pass

        return per(q)

    def exquo(f, g, auto=True):
        """
        Computes polynomial exact quotient of ``f`` by ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).exquo(Poly(x - 1, x))
        Poly(x + 1, x, domain='ZZ')

        >>> Poly(x**2 + 1, x).exquo(Poly(2*x - 4, x))
        Traceback (most recent call last):
        ...
        ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

        """
        dom, per, F, G = f._unify(g)
        retract = False

        if auto and dom.is_Ring and not dom.is_Field:
            F, G = F.to_field(), G.to_field()
            retract = True

        if hasattr(f.rep, 'exquo'):
            try:
                q = F.exquo(G)
            except ExactQuotientFailed as exc:
                raise exc.new(f.as_expr(), g.as_expr())
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'exquo')

        if retract:
            try:
                q = q.to_ring()
            except CoercionFailed:
                pass

        return per(q)

    def _gen_to_level(f, gen):
        """Returns level associated with the given generator. """
        if isinstance(gen, int):
            length = len(f.gens)

            if -length <= gen < length:
                if gen < 0:
                    return length + gen
                else:
                    return gen
            else:
                raise PolynomialError("-%s <= gen < %s expected, got %s" %
                                      (length, length, gen))
        else:
            try:
                return f.gens.index(sympify(gen))
            except ValueError:
                raise PolynomialError(
                    "a valid generator expected, got %s" % gen)

    def degree(f, gen=0):
        """
        Returns degree of ``f`` in ``x_j``.

        The degree of 0 is negative infinity.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).degree()
        2
        >>> Poly(x**2 + y*x + y, x, y).degree(y)
        1
        >>> Poly(0, x).degree()
        -oo

        """
        j = f._gen_to_level(gen)

        if hasattr(f.rep, 'degree'):
            return f.rep.degree(j)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'degree')

    def degree_list(f):
        """
        Returns a list of degrees of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).degree_list()
        (2, 1)

        """
        if hasattr(f.rep, 'degree_list'):
            return f.rep.degree_list()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'degree_list')

    def total_degree(f):
        """
        Returns the total degree of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + y*x + 1, x, y).total_degree()
        2
        >>> Poly(x + y**5, x, y).total_degree()
        5

        """
        if hasattr(f.rep, 'total_degree'):
            return f.rep.total_degree()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'total_degree')

    def homogenize(f, s):
        """
        Returns the homogeneous polynomial of ``f``.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. If you only
        want to check if a polynomial is homogeneous, then use
        :func:`Poly.is_homogeneous`. If you want not only to check if a
        polynomial is homogeneous but also compute its homogeneous order,
        then use :func:`Poly.homogeneous_order`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> f = Poly(x**5 + 2*x**2*y**2 + 9*x*y**3)
        >>> f.homogenize(z)
        Poly(x**5 + 2*x**2*y**2*z + 9*x*y**3*z, x, y, z, domain='ZZ')

        """
        if not isinstance(s, Symbol):
            raise TypeError("``Symbol`` expected, got %s" % type(s))
        if s in f.gens:
            i = f.gens.index(s)
            gens = f.gens
        else:
            i = len(f.gens)
            gens = f.gens + (s,)
        if hasattr(f.rep, 'homogenize'):
            return f.per(f.rep.homogenize(i), gens=gens)
        raise OperationNotSupported(f, 'homogeneous_order')

    def homogeneous_order(f):
        """
        Returns the homogeneous order of ``f``.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. This degree is
        the homogeneous order of ``f``. If you only want to check if a
        polynomial is homogeneous, then use :func:`Poly.is_homogeneous`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**5 + 2*x**3*y**2 + 9*x*y**4)
        >>> f.homogeneous_order()
        5

        """
        if hasattr(f.rep, 'homogeneous_order'):
            return f.rep.homogeneous_order()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'homogeneous_order')

    def LC(f, order=None):
        """
        Returns the leading coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(4*x**3 + 2*x**2 + 3*x, x).LC()
        4

        """
        if order is not None:
            return f.coeffs(order)[0]

        if hasattr(f.rep, 'LC'):
            result = f.rep.LC()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'LC')

        return f.rep.dom.to_sympy(result)

    def TC(f):
        """
        Returns the trailing coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x**2 + 3*x, x).TC()
        0

        """
        if hasattr(f.rep, 'TC'):
            result = f.rep.TC()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'TC')

        return f.rep.dom.to_sympy(result)

    def EC(f, order=None):
        """
        Returns the last non-zero coefficient of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 + 2*x**2 + 3*x, x).EC()
        3

        """
        if hasattr(f.rep, 'coeffs'):
            return f.coeffs(order)[-1]
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'EC')

    def coeff_monomial(f, monom):
        """
        Returns the coefficient of ``monom`` in ``f`` if there, else None.

        Examples
        ========

        >>> from sympy import Poly, exp
        >>> from sympy.abc import x, y

        >>> p = Poly(24*x*y*exp(8) + 23*x, x, y)

        >>> p.coeff_monomial(x)
        23
        >>> p.coeff_monomial(y)
        0
        >>> p.coeff_monomial(x*y)
        24*exp(8)

        Note that ``Expr.coeff()`` behaves differently, collecting terms
        if possible; the Poly must be converted to an Expr to use that
        method, however:

        >>> p.as_expr().coeff(x)
        24*y*exp(8) + 23
        >>> p.as_expr().coeff(y)
        24*x*exp(8)
        >>> p.as_expr().coeff(x*y)
        24*exp(8)

        See Also
        ========
        nth: more efficient query using exponents of the monomial's generators

        """
        return f.nth(*Monomial(monom, f.gens).exponents)

    def nth(f, *N):
        """
        Returns the ``n``-th coefficient of ``f`` where ``N`` are the
        exponents of the generators in the term of interest.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x, y

        >>> Poly(x**3 + 2*x**2 + 3*x, x).nth(2)
        2
        >>> Poly(x**3 + 2*x*y**2 + y**2, x, y).nth(1, 2)
        2
        >>> Poly(4*sqrt(x)*y)
        Poly(4*y*(sqrt(x)), y, sqrt(x), domain='ZZ')
        >>> _.nth(1, 1)
        4

        See Also
        ========
        coeff_monomial

        """
        if hasattr(f.rep, 'nth'):
            if len(N) != len(f.gens):
                raise ValueError('exponent of each generator must be specified')
            result = f.rep.nth(*list(map(int, N)))
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'nth')

        return f.rep.dom.to_sympy(result)

    def coeff(f, x, n=1, right=False):
        # the semantics of coeff_monomial and Expr.coeff are different;
        # if someone is working with a Poly, they should be aware of the
        # differences and chose the method best suited for the query.
        # Alternatively, a pure-polys method could be written here but
        # at this time the ``right`` keyword would be ignored because Poly
        # doesn't work with non-commutatives.
        raise NotImplementedError(
            'Either convert to Expr with `as_expr` method '
            'to use Expr\'s coeff method or else use the '
            '`coeff_monomial` method of Polys.')

    def LM(f, order=None):
        """
        Returns the leading monomial of ``f``.

        The Leading monomial signifies the monomial having
        the highest power of the principal generator in the
        expression f.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LM()
        x**2*y**0

        """
        return Monomial(f.monoms(order)[0], f.gens)

    def EM(f, order=None):
        """
        Returns the last non-zero monomial of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).EM()
        x**0*y**1

        """
        return Monomial(f.monoms(order)[-1], f.gens)

    def LT(f, order=None):
        """
        Returns the leading term of ``f``.

        The Leading term signifies the term having
        the highest power of the principal generator in the
        expression f along with its coefficient.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).LT()
        (x**2*y**0, 4)

        """
        monom, coeff = f.terms(order)[0]
        return Monomial(monom, f.gens), coeff

    def ET(f, order=None):
        """
        Returns the last non-zero term of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(4*x**2 + 2*x*y**2 + x*y + 3*y, x, y).ET()
        (x**0*y**1, 3)

        """
        monom, coeff = f.terms(order)[-1]
        return Monomial(monom, f.gens), coeff

    def max_norm(f):
        """
        Returns maximum norm of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(-x**2 + 2*x - 3, x).max_norm()
        3

        """
        if hasattr(f.rep, 'max_norm'):
            result = f.rep.max_norm()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'max_norm')

        return f.rep.dom.to_sympy(result)

    def l1_norm(f):
        """
        Returns l1 norm of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(-x**2 + 2*x - 3, x).l1_norm()
        6

        """
        if hasattr(f.rep, 'l1_norm'):
            result = f.rep.l1_norm()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'l1_norm')

        return f.rep.dom.to_sympy(result)

    def clear_denoms(self, convert=False):
        """
        Clear denominators, but keep the ground domain.

        Examples
        ========

        >>> from sympy import Poly, S, QQ
        >>> from sympy.abc import x

        >>> f = Poly(x/2 + S(1)/3, x, domain=QQ)

        >>> f.clear_denoms()
        (6, Poly(3*x + 2, x, domain='QQ'))
        >>> f.clear_denoms(convert=True)
        (6, Poly(3*x + 2, x, domain='ZZ'))

        """
        f = self

        if not f.rep.dom.is_Field:
            return S.One, f

        dom = f.get_domain()
        if dom.has_assoc_Ring:
            dom = f.rep.dom.get_ring()

        if hasattr(f.rep, 'clear_denoms'):
            coeff, result = f.rep.clear_denoms()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'clear_denoms')

        coeff, f = dom.to_sympy(coeff), f.per(result)

        if not convert or not dom.has_assoc_Ring:
            return coeff, f
        else:
            return coeff, f.to_ring()

    def rat_clear_denoms(self, g):
        """
        Clear denominators in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = Poly(x**2/y + 1, x)
        >>> g = Poly(x**3 + y, x)

        >>> p, q = f.rat_clear_denoms(g)

        >>> p
        Poly(x**2 + y, x, domain='ZZ[y]')
        >>> q
        Poly(y*x**3 + y**2, x, domain='ZZ[y]')

        """
        f = self

        dom, per, f, g = f._unify(g)

        f = per(f)
        g = per(g)

        if not (dom.is_Field and dom.has_assoc_Ring):
            return f, g

        a, f = f.clear_denoms(convert=True)
        b, g = g.clear_denoms(convert=True)

        f = f.mul_ground(b)
        g = g.mul_ground(a)

        return f, g

    def integrate(self, *specs, **args):
        """
        Computes indefinite integral of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x + 1, x).integrate()
        Poly(1/3*x**3 + x**2 + x, x, domain='QQ')

        >>> Poly(x*y**2 + x, x, y).integrate((0, 1), (1, 0))
        Poly(1/2*x**2*y**2 + 1/2*x**2, x, y, domain='QQ')

        """
        f = self

        if args.get('auto', True) and f.rep.dom.is_Ring:
            f = f.to_field()

        if hasattr(f.rep, 'integrate'):
            if not specs:
                return f.per(f.rep.integrate(m=1))

            rep = f.rep

            for spec in specs:
                if isinstance(spec, tuple):
                    gen, m = spec
                else:
                    gen, m = spec, 1

                rep = rep.integrate(int(m), f._gen_to_level(gen))

            return f.per(rep)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'integrate')

    def diff(f, *specs, **kwargs):
        """
        Computes partial derivative of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + 2*x + 1, x).diff()
        Poly(2*x + 2, x, domain='ZZ')

        >>> Poly(x*y**2 + x, x, y).diff((0, 0), (1, 1))
        Poly(2*x*y, x, y, domain='ZZ')

        """
        if not kwargs.get('evaluate', True):
            return Derivative(f, *specs, **kwargs)

        if hasattr(f.rep, 'diff'):
            if not specs:
                return f.per(f.rep.diff(m=1))

            rep = f.rep

            for spec in specs:
                if isinstance(spec, tuple):
                    gen, m = spec
                else:
                    gen, m = spec, 1

                rep = rep.diff(int(m), f._gen_to_level(gen))

            return f.per(rep)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'diff')

    _eval_derivative = diff

    def eval(self, x, a=None, auto=True):
        """
        Evaluate ``f`` at ``a`` in the given variable.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> Poly(x**2 + 2*x + 3, x).eval(2)
        11

        >>> Poly(2*x*y + 3*x + y + 2, x, y).eval(x, 2)
        Poly(5*y + 8, y, domain='ZZ')

        >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)

        >>> f.eval({x: 2})
        Poly(5*y + 2*z + 6, y, z, domain='ZZ')
        >>> f.eval({x: 2, y: 5})
        Poly(2*z + 31, z, domain='ZZ')
        >>> f.eval({x: 2, y: 5, z: 7})
        45

        >>> f.eval((2, 5))
        Poly(2*z + 31, z, domain='ZZ')
        >>> f(2, 5)
        Poly(2*z + 31, z, domain='ZZ')

        """
        f = self

        if a is None:
            if isinstance(x, dict):
                mapping = x

                for gen, value in mapping.items():
                    f = f.eval(gen, value)

                return f
            elif isinstance(x, (tuple, list)):
                values = x

                if len(values) > len(f.gens):
                    raise ValueError("too many values provided")

                for gen, value in zip(f.gens, values):
                    f = f.eval(gen, value)

                return f
            else:
                j, a = 0, x
        else:
            j = f._gen_to_level(x)

        if not hasattr(f.rep, 'eval'):  # pragma: no cover
            raise OperationNotSupported(f, 'eval')

        try:
            result = f.rep.eval(a, j)
        except CoercionFailed:
            if not auto:
                raise DomainError("Cannot evaluate at %s in %s" % (a, f.rep.dom))
            else:
                a_domain, [a] = construct_domain([a])
                new_domain = f.get_domain().unify_with_symbols(a_domain, f.gens)

                f = f.set_domain(new_domain)
                a = new_domain.convert(a, a_domain)

                result = f.rep.eval(a, j)

        return f.per(result, remove=j)

    def __call__(f, *values):
        """
        Evaluate ``f`` at the give values.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y, z

        >>> f = Poly(2*x*y + 3*x + y + 2*z, x, y, z)

        >>> f(2)
        Poly(5*y + 2*z + 6, y, z, domain='ZZ')
        >>> f(2, 5)
        Poly(2*z + 31, z, domain='ZZ')
        >>> f(2, 5, 7)
        45

        """
        return f.eval(values)

    def half_gcdex(f, g, auto=True):
        """
        Half extended Euclidean algorithm of ``f`` and ``g``.

        Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
        >>> g = x**3 + x**2 - 4*x - 4

        >>> Poly(f).half_gcdex(Poly(g))
        (Poly(-1/5*x + 3/5, x, domain='QQ'), Poly(x + 1, x, domain='QQ'))

        """
        dom, per, F, G = f._unify(g)

        if auto and dom.is_Ring:
            F, G = F.to_field(), G.to_field()

        if hasattr(f.rep, 'half_gcdex'):
            s, h = F.half_gcdex(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'half_gcdex')

        return per(s), per(h)

    def gcdex(f, g, auto=True):
        """
        Extended Euclidean algorithm of ``f`` and ``g``.

        Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**4 - 2*x**3 - 6*x**2 + 12*x + 15
        >>> g = x**3 + x**2 - 4*x - 4

        >>> Poly(f).gcdex(Poly(g))
        (Poly(-1/5*x + 3/5, x, domain='QQ'),
         Poly(1/5*x**2 - 6/5*x + 2, x, domain='QQ'),
         Poly(x + 1, x, domain='QQ'))

        """
        dom, per, F, G = f._unify(g)

        if auto and dom.is_Ring:
            F, G = F.to_field(), G.to_field()

        if hasattr(f.rep, 'gcdex'):
            s, t, h = F.gcdex(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'gcdex')

        return per(s), per(t), per(h)

    def invert(f, g, auto=True):
        """
        Invert ``f`` modulo ``g`` when possible.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).invert(Poly(2*x - 1, x))
        Poly(-4/3, x, domain='QQ')

        >>> Poly(x**2 - 1, x).invert(Poly(x - 1, x))
        Traceback (most recent call last):
        ...
        NotInvertible: zero divisor

        """
        dom, per, F, G = f._unify(g)

        if auto and dom.is_Ring:
            F, G = F.to_field(), G.to_field()

        if hasattr(f.rep, 'invert'):
            result = F.invert(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'invert')

        return per(result)

    def revert(f, n):
        """
        Compute ``f**(-1)`` mod ``x**n``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(1, x).revert(2)
        Poly(1, x, domain='ZZ')

        >>> Poly(1 + x, x).revert(1)
        Poly(1, x, domain='ZZ')

        >>> Poly(x**2 - 2, x).revert(2)
        Traceback (most recent call last):
        ...
        NotReversible: only units are reversible in a ring

        >>> Poly(1/x, x).revert(1)
        Traceback (most recent call last):
        ...
        PolynomialError: 1/x contains an element of the generators set

        """
        if hasattr(f.rep, 'revert'):
            result = f.rep.revert(int(n))
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'revert')

        return f.per(result)

    def subresultants(f, g):
        """
        Computes the subresultant PRS of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 1, x).subresultants(Poly(x**2 - 1, x))
        [Poly(x**2 + 1, x, domain='ZZ'),
         Poly(x**2 - 1, x, domain='ZZ'),
         Poly(-2, x, domain='ZZ')]

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'subresultants'):
            result = F.subresultants(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'subresultants')

        return list(map(per, result))

    def resultant(f, g, includePRS=False):
        """
        Computes the resultant of ``f`` and ``g`` via PRS.

        If includePRS=True, it includes the subresultant PRS in the result.
        Because the PRS is used to calculate the resultant, this is more
        efficient than calling :func:`subresultants` separately.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**2 + 1, x)

        >>> f.resultant(Poly(x**2 - 1, x))
        4
        >>> f.resultant(Poly(x**2 - 1, x), includePRS=True)
        (4, [Poly(x**2 + 1, x, domain='ZZ'), Poly(x**2 - 1, x, domain='ZZ'),
             Poly(-2, x, domain='ZZ')])

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'resultant'):
            if includePRS:
                result, R = F.resultant(G, includePRS=includePRS)
            else:
                result = F.resultant(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'resultant')

        if includePRS:
            return (per(result, remove=0), list(map(per, R)))
        return per(result, remove=0)

    def discriminant(f):
        """
        Computes the discriminant of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + 2*x + 3, x).discriminant()
        -8

        """
        if hasattr(f.rep, 'discriminant'):
            result = f.rep.discriminant()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'discriminant')

        return f.per(result, remove=0)

    def dispersionset(f, g=None):
        r"""Compute the *dispersion set* of two polynomials.

        For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
        and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as:

        .. math::
            \operatorname{J}(f, g)
            & := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\
            &  = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\}

        For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`.

        Examples
        ========

        >>> from sympy import poly
        >>> from sympy.polys.dispersion import dispersion, dispersionset
        >>> from sympy.abc import x

        Dispersion set and dispersion of a simple polynomial:

        >>> fp = poly((x - 3)*(x + 3), x)
        >>> sorted(dispersionset(fp))
        [0, 6]
        >>> dispersion(fp)
        6

        Note that the definition of the dispersion is not symmetric:

        >>> fp = poly(x**4 - 3*x**2 + 1, x)
        >>> gp = fp.shift(-3)
        >>> sorted(dispersionset(fp, gp))
        [2, 3, 4]
        >>> dispersion(fp, gp)
        4
        >>> sorted(dispersionset(gp, fp))
        []
        >>> dispersion(gp, fp)
        -oo

        Computing the dispersion also works over field extensions:

        >>> from sympy import sqrt
        >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
        >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
        >>> sorted(dispersionset(fp, gp))
        [2]
        >>> sorted(dispersionset(gp, fp))
        [1, 4]

        We can even perform the computations for polynomials
        having symbolic coefficients:

        >>> from sympy.abc import a
        >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
        >>> sorted(dispersionset(fp))
        [0, 1]

        See Also
        ========

        dispersion

        References
        ==========

        1. [ManWright94]_
        2. [Koepf98]_
        3. [Abramov71]_
        4. [Man93]_
        """
        from sympy.polys.dispersion import dispersionset
        return dispersionset(f, g)

    def dispersion(f, g=None):
        r"""Compute the *dispersion* of polynomials.

        For two polynomials `f(x)` and `g(x)` with `\deg f > 0`
        and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as:

        .. math::
            \operatorname{dis}(f, g)
            & := \max\{ J(f,g) \cup \{0\} \} \\
            &  = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \}

        and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`.

        Examples
        ========

        >>> from sympy import poly
        >>> from sympy.polys.dispersion import dispersion, dispersionset
        >>> from sympy.abc import x

        Dispersion set and dispersion of a simple polynomial:

        >>> fp = poly((x - 3)*(x + 3), x)
        >>> sorted(dispersionset(fp))
        [0, 6]
        >>> dispersion(fp)
        6

        Note that the definition of the dispersion is not symmetric:

        >>> fp = poly(x**4 - 3*x**2 + 1, x)
        >>> gp = fp.shift(-3)
        >>> sorted(dispersionset(fp, gp))
        [2, 3, 4]
        >>> dispersion(fp, gp)
        4
        >>> sorted(dispersionset(gp, fp))
        []
        >>> dispersion(gp, fp)
        -oo

        Computing the dispersion also works over field extensions:

        >>> from sympy import sqrt
        >>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>')
        >>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>')
        >>> sorted(dispersionset(fp, gp))
        [2]
        >>> sorted(dispersionset(gp, fp))
        [1, 4]

        We can even perform the computations for polynomials
        having symbolic coefficients:

        >>> from sympy.abc import a
        >>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x)
        >>> sorted(dispersionset(fp))
        [0, 1]

        See Also
        ========

        dispersionset

        References
        ==========

        1. [ManWright94]_
        2. [Koepf98]_
        3. [Abramov71]_
        4. [Man93]_
        """
        from sympy.polys.dispersion import dispersion
        return dispersion(f, g)

    def cofactors(f, g):
        """
        Returns the GCD of ``f`` and ``g`` and their cofactors.

        Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
        ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
        of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).cofactors(Poly(x**2 - 3*x + 2, x))
        (Poly(x - 1, x, domain='ZZ'),
         Poly(x + 1, x, domain='ZZ'),
         Poly(x - 2, x, domain='ZZ'))

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'cofactors'):
            h, cff, cfg = F.cofactors(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'cofactors')

        return per(h), per(cff), per(cfg)

    def gcd(f, g):
        """
        Returns the polynomial GCD of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).gcd(Poly(x**2 - 3*x + 2, x))
        Poly(x - 1, x, domain='ZZ')

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'gcd'):
            result = F.gcd(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'gcd')

        return per(result)

    def lcm(f, g):
        """
        Returns polynomial LCM of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 1, x).lcm(Poly(x**2 - 3*x + 2, x))
        Poly(x**3 - 2*x**2 - x + 2, x, domain='ZZ')

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'lcm'):
            result = F.lcm(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'lcm')

        return per(result)

    def trunc(f, p):
        """
        Reduce ``f`` modulo a constant ``p``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 + 3*x**2 + 5*x + 7, x).trunc(3)
        Poly(-x**3 - x + 1, x, domain='ZZ')

        """
        p = f.rep.dom.convert(p)

        if hasattr(f.rep, 'trunc'):
            result = f.rep.trunc(p)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'trunc')

        return f.per(result)

    def monic(self, auto=True):
        """
        Divides all coefficients by ``LC(f)``.

        Examples
        ========

        >>> from sympy import Poly, ZZ
        >>> from sympy.abc import x

        >>> Poly(3*x**2 + 6*x + 9, x, domain=ZZ).monic()
        Poly(x**2 + 2*x + 3, x, domain='QQ')

        >>> Poly(3*x**2 + 4*x + 2, x, domain=ZZ).monic()
        Poly(x**2 + 4/3*x + 2/3, x, domain='QQ')

        """
        f = self

        if auto and f.rep.dom.is_Ring:
            f = f.to_field()

        if hasattr(f.rep, 'monic'):
            result = f.rep.monic()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'monic')

        return f.per(result)

    def content(f):
        """
        Returns the GCD of polynomial coefficients.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(6*x**2 + 8*x + 12, x).content()
        2

        """
        if hasattr(f.rep, 'content'):
            result = f.rep.content()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'content')

        return f.rep.dom.to_sympy(result)

    def primitive(f):
        """
        Returns the content and a primitive form of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 + 8*x + 12, x).primitive()
        (2, Poly(x**2 + 4*x + 6, x, domain='ZZ'))

        """
        if hasattr(f.rep, 'primitive'):
            cont, result = f.rep.primitive()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'primitive')

        return f.rep.dom.to_sympy(cont), f.per(result)

    def compose(f, g):
        """
        Computes the functional composition of ``f`` and ``g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + x, x).compose(Poly(x - 1, x))
        Poly(x**2 - x, x, domain='ZZ')

        """
        _, per, F, G = f._unify(g)

        if hasattr(f.rep, 'compose'):
            result = F.compose(G)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'compose')

        return per(result)

    def decompose(f):
        """
        Computes a functional decomposition of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**4 + 2*x**3 - x - 1, x, domain='ZZ').decompose()
        [Poly(x**2 - x - 1, x, domain='ZZ'), Poly(x**2 + x, x, domain='ZZ')]

        """
        if hasattr(f.rep, 'decompose'):
            result = f.rep.decompose()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'decompose')

        return list(map(f.per, result))

    def shift(f, a):
        """
        Efficiently compute Taylor shift ``f(x + a)``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).shift(2)
        Poly(x**2 + 2*x + 1, x, domain='ZZ')

        """
        if hasattr(f.rep, 'shift'):
            result = f.rep.shift(a)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'shift')

        return f.per(result)

    def transform(f, p, q):
        """
        Efficiently evaluate the functional transformation ``q**n * f(p/q)``.


        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).transform(Poly(x + 1, x), Poly(x - 1, x))
        Poly(4, x, domain='ZZ')

        """
        P, Q = p.unify(q)
        F, P = f.unify(P)
        F, Q = F.unify(Q)

        if hasattr(F.rep, 'transform'):
            result = F.rep.transform(P.rep, Q.rep)
        else:  # pragma: no cover
            raise OperationNotSupported(F, 'transform')

        return F.per(result)

    def sturm(self, auto=True):
        """
        Computes the Sturm sequence of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 - 2*x**2 + x - 3, x).sturm()
        [Poly(x**3 - 2*x**2 + x - 3, x, domain='QQ'),
         Poly(3*x**2 - 4*x + 1, x, domain='QQ'),
         Poly(2/9*x + 25/9, x, domain='QQ'),
         Poly(-2079/4, x, domain='QQ')]

        """
        f = self

        if auto and f.rep.dom.is_Ring:
            f = f.to_field()

        if hasattr(f.rep, 'sturm'):
            result = f.rep.sturm()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sturm')

        return list(map(f.per, result))

    def gff_list(f):
        """
        Computes greatest factorial factorization of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**5 + 2*x**4 - x**3 - 2*x**2

        >>> Poly(f).gff_list()
        [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]

        """
        if hasattr(f.rep, 'gff_list'):
            result = f.rep.gff_list()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'gff_list')

        return [(f.per(g), k) for g, k in result]

    def norm(f):
        """
        Computes the product, ``Norm(f)``, of the conjugates of
        a polynomial ``f`` defined over a number field ``K``.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x

        >>> a, b = sqrt(2), sqrt(3)

        A polynomial over a quadratic extension.
        Two conjugates x - a and x + a.

        >>> f = Poly(x - a, x, extension=a)
        >>> f.norm()
        Poly(x**2 - 2, x, domain='QQ')

        A polynomial over a quartic extension.
        Four conjugates x - a, x - a, x + a and x + a.

        >>> f = Poly(x - a, x, extension=(a, b))
        >>> f.norm()
        Poly(x**4 - 4*x**2 + 4, x, domain='QQ')

        """
        if hasattr(f.rep, 'norm'):
            r = f.rep.norm()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'norm')

        return f.per(r)

    def sqf_norm(f):
        """
        Computes square-free norm of ``f``.

        Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
        ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
        where ``a`` is the algebraic extension of the ground domain.

        Examples
        ========

        >>> from sympy import Poly, sqrt
        >>> from sympy.abc import x

        >>> s, f, r = Poly(x**2 + 1, x, extension=[sqrt(3)]).sqf_norm()

        >>> s
        1
        >>> f
        Poly(x**2 - 2*sqrt(3)*x + 4, x, domain='QQ<sqrt(3)>')
        >>> r
        Poly(x**4 - 4*x**2 + 16, x, domain='QQ')

        """
        if hasattr(f.rep, 'sqf_norm'):
            s, g, r = f.rep.sqf_norm()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sqf_norm')

        return s, f.per(g), f.per(r)

    def sqf_part(f):
        """
        Computes square-free part of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**3 - 3*x - 2, x).sqf_part()
        Poly(x**2 - x - 2, x, domain='ZZ')

        """
        if hasattr(f.rep, 'sqf_part'):
            result = f.rep.sqf_part()
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sqf_part')

        return f.per(result)

    def sqf_list(f, all=False):
        """
        Returns a list of square-free factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16

        >>> Poly(f).sqf_list()
        (2, [(Poly(x + 1, x, domain='ZZ'), 2),
             (Poly(x + 2, x, domain='ZZ'), 3)])

        >>> Poly(f).sqf_list(all=True)
        (2, [(Poly(1, x, domain='ZZ'), 1),
             (Poly(x + 1, x, domain='ZZ'), 2),
             (Poly(x + 2, x, domain='ZZ'), 3)])

        """
        if hasattr(f.rep, 'sqf_list'):
            coeff, factors = f.rep.sqf_list(all)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sqf_list')

        return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]

    def sqf_list_include(f, all=False):
        """
        Returns a list of square-free factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly, expand
        >>> from sympy.abc import x

        >>> f = expand(2*(x + 1)**3*x**4)
        >>> f
        2*x**7 + 6*x**6 + 6*x**5 + 2*x**4

        >>> Poly(f).sqf_list_include()
        [(Poly(2, x, domain='ZZ'), 1),
         (Poly(x + 1, x, domain='ZZ'), 3),
         (Poly(x, x, domain='ZZ'), 4)]

        >>> Poly(f).sqf_list_include(all=True)
        [(Poly(2, x, domain='ZZ'), 1),
         (Poly(1, x, domain='ZZ'), 2),
         (Poly(x + 1, x, domain='ZZ'), 3),
         (Poly(x, x, domain='ZZ'), 4)]

        """
        if hasattr(f.rep, 'sqf_list_include'):
            factors = f.rep.sqf_list_include(all)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'sqf_list_include')

        return [(f.per(g), k) for g, k in factors]

    def factor_list(f):
        """
        Returns a list of irreducible factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y

        >>> Poly(f).factor_list()
        (2, [(Poly(x + y, x, y, domain='ZZ'), 1),
             (Poly(x**2 + 1, x, y, domain='ZZ'), 2)])

        """
        if hasattr(f.rep, 'factor_list'):
            try:
                coeff, factors = f.rep.factor_list()
            except DomainError:
                return S.One, [(f, 1)]
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'factor_list')

        return f.rep.dom.to_sympy(coeff), [(f.per(g), k) for g, k in factors]

    def factor_list_include(f):
        """
        Returns a list of irreducible factors of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> f = 2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y

        >>> Poly(f).factor_list_include()
        [(Poly(2*x + 2*y, x, y, domain='ZZ'), 1),
         (Poly(x**2 + 1, x, y, domain='ZZ'), 2)]

        """
        if hasattr(f.rep, 'factor_list_include'):
            try:
                factors = f.rep.factor_list_include()
            except DomainError:
                return [(f, 1)]
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'factor_list_include')

        return [(f.per(g), k) for g, k in factors]

    def intervals(f, all=False, eps=None, inf=None, sup=None, fast=False, sqf=False):
        """
        Compute isolating intervals for roots of ``f``.

        For real roots the Vincent-Akritas-Strzebonski (VAS) continued fractions method is used.

        References
        ==========
        .. [#] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root
            Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005.
        .. [#] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the
            Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear
            Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3, x).intervals()
        [((-2, -1), 1), ((1, 2), 1)]
        >>> Poly(x**2 - 3, x).intervals(eps=1e-2)
        [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]

        """
        if eps is not None:
            eps = QQ.convert(eps)

            if eps <= 0:
                raise ValueError("'eps' must be a positive rational")

        if inf is not None:
            inf = QQ.convert(inf)
        if sup is not None:
            sup = QQ.convert(sup)

        if hasattr(f.rep, 'intervals'):
            result = f.rep.intervals(
                all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'intervals')

        if sqf:
            def _real(interval):
                s, t = interval
                return (QQ.to_sympy(s), QQ.to_sympy(t))

            if not all:
                return list(map(_real, result))

            def _complex(rectangle):
                (u, v), (s, t) = rectangle
                return (QQ.to_sympy(u) + I*QQ.to_sympy(v),
                        QQ.to_sympy(s) + I*QQ.to_sympy(t))

            real_part, complex_part = result

            return list(map(_real, real_part)), list(map(_complex, complex_part))
        else:
            def _real(interval):
                (s, t), k = interval
                return ((QQ.to_sympy(s), QQ.to_sympy(t)), k)

            if not all:
                return list(map(_real, result))

            def _complex(rectangle):
                ((u, v), (s, t)), k = rectangle
                return ((QQ.to_sympy(u) + I*QQ.to_sympy(v),
                         QQ.to_sympy(s) + I*QQ.to_sympy(t)), k)

            real_part, complex_part = result

            return list(map(_real, real_part)), list(map(_complex, complex_part))

    def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
        """
        Refine an isolating interval of a root to the given precision.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3, x).refine_root(1, 2, eps=1e-2)
        (19/11, 26/15)

        """
        if check_sqf and not f.is_sqf:
            raise PolynomialError("only square-free polynomials supported")

        s, t = QQ.convert(s), QQ.convert(t)

        if eps is not None:
            eps = QQ.convert(eps)

            if eps <= 0:
                raise ValueError("'eps' must be a positive rational")

        if steps is not None:
            steps = int(steps)
        elif eps is None:
            steps = 1

        if hasattr(f.rep, 'refine_root'):
            S, T = f.rep.refine_root(s, t, eps=eps, steps=steps, fast=fast)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'refine_root')

        return QQ.to_sympy(S), QQ.to_sympy(T)

    def count_roots(f, inf=None, sup=None):
        """
        Return the number of roots of ``f`` in ``[inf, sup]`` interval.

        Examples
        ========

        >>> from sympy import Poly, I
        >>> from sympy.abc import x

        >>> Poly(x**4 - 4, x).count_roots(-3, 3)
        2
        >>> Poly(x**4 - 4, x).count_roots(0, 1 + 3*I)
        1

        """
        inf_real, sup_real = True, True

        if inf is not None:
            inf = sympify(inf)

            if inf is S.NegativeInfinity:
                inf = None
            else:
                re, im = inf.as_real_imag()

                if not im:
                    inf = QQ.convert(inf)
                else:
                    inf, inf_real = list(map(QQ.convert, (re, im))), False

        if sup is not None:
            sup = sympify(sup)

            if sup is S.Infinity:
                sup = None
            else:
                re, im = sup.as_real_imag()

                if not im:
                    sup = QQ.convert(sup)
                else:
                    sup, sup_real = list(map(QQ.convert, (re, im))), False

        if inf_real and sup_real:
            if hasattr(f.rep, 'count_real_roots'):
                count = f.rep.count_real_roots(inf=inf, sup=sup)
            else:  # pragma: no cover
                raise OperationNotSupported(f, 'count_real_roots')
        else:
            if inf_real and inf is not None:
                inf = (inf, QQ.zero)

            if sup_real and sup is not None:
                sup = (sup, QQ.zero)

            if hasattr(f.rep, 'count_complex_roots'):
                count = f.rep.count_complex_roots(inf=inf, sup=sup)
            else:  # pragma: no cover
                raise OperationNotSupported(f, 'count_complex_roots')

        return Integer(count)

    def root(f, index, radicals=True):
        """
        Get an indexed root of a polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(2*x**3 - 7*x**2 + 4*x + 4)

        >>> f.root(0)
        -1/2
        >>> f.root(1)
        2
        >>> f.root(2)
        2
        >>> f.root(3)
        Traceback (most recent call last):
        ...
        IndexError: root index out of [-3, 2] range, got 3

        >>> Poly(x**5 + x + 1).root(0)
        CRootOf(x**3 - x**2 + 1, 0)

        """
        return sympy.polys.rootoftools.rootof(f, index, radicals=radicals)

    def real_roots(f, multiple=True, radicals=True):
        """
        Return a list of real roots with multiplicities.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).real_roots()
        [-1/2, 2, 2]
        >>> Poly(x**3 + x + 1).real_roots()
        [CRootOf(x**3 + x + 1, 0)]

        """
        reals = sympy.polys.rootoftools.CRootOf.real_roots(f, radicals=radicals)

        if multiple:
            return reals
        else:
            return group(reals, multiple=False)

    def all_roots(f, multiple=True, radicals=True):
        """
        Return a list of real and complex roots with multiplicities.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**3 - 7*x**2 + 4*x + 4).all_roots()
        [-1/2, 2, 2]
        >>> Poly(x**3 + x + 1).all_roots()
        [CRootOf(x**3 + x + 1, 0),
         CRootOf(x**3 + x + 1, 1),
         CRootOf(x**3 + x + 1, 2)]

        """
        roots = sympy.polys.rootoftools.CRootOf.all_roots(f, radicals=radicals)

        if multiple:
            return roots
        else:
            return group(roots, multiple=False)

    def nroots(f, n=15, maxsteps=50, cleanup=True):
        """
        Compute numerical approximations of roots of ``f``.

        Parameters
        ==========

        n ... the number of digits to calculate
        maxsteps ... the maximum number of iterations to do

        If the accuracy `n` cannot be reached in `maxsteps`, it will raise an
        exception. You need to rerun with higher maxsteps.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 3).nroots(n=15)
        [-1.73205080756888, 1.73205080756888]
        >>> Poly(x**2 - 3).nroots(n=30)
        [-1.73205080756887729352744634151, 1.73205080756887729352744634151]

        """
        if f.is_multivariate:
            raise MultivariatePolynomialError(
                "Cannot compute numerical roots of %s" % f)

        if f.degree() <= 0:
            return []

        # For integer and rational coefficients, convert them to integers only
        # (for accuracy). Otherwise just try to convert the coefficients to
        # mpmath.mpc and raise an exception if the conversion fails.
        if f.rep.dom is ZZ:
            coeffs = [int(coeff) for coeff in f.all_coeffs()]
        elif f.rep.dom is QQ:
            denoms = [coeff.q for coeff in f.all_coeffs()]
            fac = ilcm(*denoms)
            coeffs = [int(coeff*fac) for coeff in f.all_coeffs()]
        else:
            coeffs = [coeff.evalf(n=n).as_real_imag()
                    for coeff in f.all_coeffs()]
            try:
                coeffs = [mpmath.mpc(*coeff) for coeff in coeffs]
            except TypeError:
                raise DomainError("Numerical domain expected, got %s" % \
                        f.rep.dom)

        dps = mpmath.mp.dps
        mpmath.mp.dps = n

        from sympy.functions.elementary.complexes import sign
        try:
            # We need to add extra precision to guard against losing accuracy.
            # 10 times the degree of the polynomial seems to work well.
            roots = mpmath.polyroots(coeffs, maxsteps=maxsteps,
                    cleanup=cleanup, error=False, extraprec=f.degree()*10)

            # Mpmath puts real roots first, then complex ones (as does all_roots)
            # so we make sure this convention holds here, too.
            roots = list(map(sympify,
                sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag)))))
        except NoConvergence:
            try:
                # If roots did not converge try again with more extra precision.
                roots = mpmath.polyroots(coeffs, maxsteps=maxsteps,
                    cleanup=cleanup, error=False, extraprec=f.degree()*15)
                roots = list(map(sympify,
                    sorted(roots, key=lambda r: (1 if r.imag else 0, r.real, abs(r.imag), sign(r.imag)))))
            except NoConvergence:
                raise NoConvergence(
                    'convergence to root failed; try n < %s or maxsteps > %s' % (
                    n, maxsteps))
        finally:
            mpmath.mp.dps = dps

        return roots

    def ground_roots(f):
        """
        Compute roots of ``f`` by factorization in the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**6 - 4*x**4 + 4*x**3 - x**2).ground_roots()
        {0: 2, 1: 2}

        """
        if f.is_multivariate:
            raise MultivariatePolynomialError(
                "Cannot compute ground roots of %s" % f)

        roots = {}

        for factor, k in f.factor_list()[1]:
            if factor.is_linear:
                a, b = factor.all_coeffs()
                roots[-b/a] = k

        return roots

    def nth_power_roots_poly(f, n):
        """
        Construct a polynomial with n-th powers of roots of ``f``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = Poly(x**4 - x**2 + 1)

        >>> f.nth_power_roots_poly(2)
        Poly(x**4 - 2*x**3 + 3*x**2 - 2*x + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(3)
        Poly(x**4 + 2*x**2 + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(4)
        Poly(x**4 + 2*x**3 + 3*x**2 + 2*x + 1, x, domain='ZZ')
        >>> f.nth_power_roots_poly(12)
        Poly(x**4 - 4*x**3 + 6*x**2 - 4*x + 1, x, domain='ZZ')

        """
        if f.is_multivariate:
            raise MultivariatePolynomialError(
                "must be a univariate polynomial")

        N = sympify(n)

        if N.is_Integer and N >= 1:
            n = int(N)
        else:
            raise ValueError("'n' must an integer and n >= 1, got %s" % n)

        x = f.gen
        t = Dummy('t')

        r = f.resultant(f.__class__.from_expr(x**n - t, x, t))

        return r.replace(t, x)

    def same_root(f, a, b):
        """
        Decide whether two roots of this polynomial are equal.

        Examples
        ========

        >>> from sympy import Poly, cyclotomic_poly, exp, I, pi
        >>> f = Poly(cyclotomic_poly(5))
        >>> r0 = exp(2*I*pi/5)
        >>> indices = [i for i, r in enumerate(f.all_roots()) if f.same_root(r, r0)]
        >>> print(indices)
        [3]

        Raises
        ======

        DomainError
            If the domain of the polynomial is not :ref:`ZZ`, :ref:`QQ`,
            :ref:`RR`, or :ref:`CC`.
        MultivariatePolynomialError
            If the polynomial is not univariate.
        PolynomialError
            If the polynomial is of degree < 2.

        """
        if f.is_multivariate:
            raise MultivariatePolynomialError(
                "Must be a univariate polynomial")

        dom_delta_sq = f.rep.mignotte_sep_bound_squared()
        delta_sq = f.domain.get_field().to_sympy(dom_delta_sq)
        # We have delta_sq = delta**2, where delta is a lower bound on the
        # minimum separation between any two roots of this polynomial.
        # Let eps = delta/3, and define eps_sq = eps**2 = delta**2/9.
        eps_sq = delta_sq / 9

        r, _, _, _ = evalf(1/eps_sq, 1, {})
        n = fastlog(r)
        # Then 2^n > 1/eps**2.
        m = (n // 2) + (n % 2)
        # Then 2^(-m) < eps.
        ev = lambda x: quad_to_mpmath(_evalf_with_bounded_error(x, m=m))

        # Then for any complex numbers a, b we will have
        # |a - ev(a)| < eps and |b - ev(b)| < eps.
        # So if |ev(a) - ev(b)|**2 < eps**2, then
        # |ev(a) - ev(b)| < eps, hence |a - b| < 3*eps = delta.
        A, B = ev(a), ev(b)
        return (A.real - B.real)**2 + (A.imag - B.imag)**2 < eps_sq

    def cancel(f, g, include=False):
        """
        Cancel common factors in a rational function ``f/g``.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x))
        (1, Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))

        >>> Poly(2*x**2 - 2, x).cancel(Poly(x**2 - 2*x + 1, x), include=True)
        (Poly(2*x + 2, x, domain='ZZ'), Poly(x - 1, x, domain='ZZ'))

        """
        dom, per, F, G = f._unify(g)

        if hasattr(F, 'cancel'):
            result = F.cancel(G, include=include)
        else:  # pragma: no cover
            raise OperationNotSupported(f, 'cancel')

        if not include:
            if dom.has_assoc_Ring:
                dom = dom.get_ring()

            cp, cq, p, q = result

            cp = dom.to_sympy(cp)
            cq = dom.to_sympy(cq)

            return cp/cq, per(p), per(q)
        else:
            return tuple(map(per, result))

    def make_monic_over_integers_by_scaling_roots(f):
        """
        Turn any univariate polynomial over :ref:`QQ` or :ref:`ZZ` into a monic
        polynomial over :ref:`ZZ`, by scaling the roots as necessary.

        Explanation
        ===========

        This operation can be performed whether or not *f* is irreducible; when
        it is, this can be understood as determining an algebraic integer
        generating the same field as a root of *f*.

        Examples
        ========

        >>> from sympy import Poly, S
        >>> from sympy.abc import x
        >>> f = Poly(x**2/2 + S(1)/4 * x + S(1)/8, x, domain='QQ')
        >>> f.make_monic_over_integers_by_scaling_roots()
        (Poly(x**2 + 2*x + 4, x, domain='ZZ'), 4)

        Returns
        =======

        Pair ``(g, c)``
            g is the polynomial

            c is the integer by which the roots had to be scaled

        """
        if not f.is_univariate or f.domain not in [ZZ, QQ]:
            raise ValueError('Polynomial must be univariate over ZZ or QQ.')
        if f.is_monic and f.domain == ZZ:
            return f, ZZ.one
        else:
            fm = f.monic()
            c, _ = fm.clear_denoms()
            return fm.transform(Poly(fm.gen), c).to_ring(), c

    def galois_group(f, by_name=False, max_tries=30, randomize=False):
        """
        Compute the Galois group of this polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x
        >>> f = Poly(x**4 - 2)
        >>> G, _ = f.galois_group(by_name=True)
        >>> print(G)
        S4TransitiveSubgroups.D4

        See Also
        ========

        sympy.polys.numberfields.galoisgroups.galois_group

        """
        from sympy.polys.numberfields.galoisgroups import (
            _galois_group_degree_3, _galois_group_degree_4_lookup,
            _galois_group_degree_5_lookup_ext_factor,
            _galois_group_degree_6_lookup,
        )
        if (not f.is_univariate
            or not f.is_irreducible
            or f.domain not in [ZZ, QQ]
        ):
            raise ValueError('Polynomial must be irreducible and univariate over ZZ or QQ.')
        gg = {
            3: _galois_group_degree_3,
            4: _galois_group_degree_4_lookup,
            5: _galois_group_degree_5_lookup_ext_factor,
            6: _galois_group_degree_6_lookup,
        }
        max_supported = max(gg.keys())
        n = f.degree()
        if n > max_supported:
            raise ValueError(f"Only polynomials up to degree {max_supported} are supported.")
        elif n < 1:
            raise ValueError("Constant polynomial has no Galois group.")
        elif n == 1:
            from sympy.combinatorics.galois import S1TransitiveSubgroups
            name, alt = S1TransitiveSubgroups.S1, True
        elif n == 2:
            from sympy.combinatorics.galois import S2TransitiveSubgroups
            name, alt = S2TransitiveSubgroups.S2, False
        else:
            g, _ = f.make_monic_over_integers_by_scaling_roots()
            name, alt = gg[n](g, max_tries=max_tries, randomize=randomize)
        G = name if by_name else name.get_perm_group()
        return G, alt

    @property
    def is_zero(f):
        """
        Returns ``True`` if ``f`` is a zero polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(0, x).is_zero
        True
        >>> Poly(1, x).is_zero
        False

        """
        return f.rep.is_zero

    @property
    def is_one(f):
        """
        Returns ``True`` if ``f`` is a unit polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(0, x).is_one
        False
        >>> Poly(1, x).is_one
        True

        """
        return f.rep.is_one

    @property
    def is_sqf(f):
        """
        Returns ``True`` if ``f`` is a square-free polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 - 2*x + 1, x).is_sqf
        False
        >>> Poly(x**2 - 1, x).is_sqf
        True

        """
        return f.rep.is_sqf

    @property
    def is_monic(f):
        """
        Returns ``True`` if the leading coefficient of ``f`` is one.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x + 2, x).is_monic
        True
        >>> Poly(2*x + 2, x).is_monic
        False

        """
        return f.rep.is_monic

    @property
    def is_primitive(f):
        """
        Returns ``True`` if GCD of the coefficients of ``f`` is one.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(2*x**2 + 6*x + 12, x).is_primitive
        False
        >>> Poly(x**2 + 3*x + 6, x).is_primitive
        True

        """
        return f.rep.is_primitive

    @property
    def is_ground(f):
        """
        Returns ``True`` if ``f`` is an element of the ground domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x, x).is_ground
        False
        >>> Poly(2, x).is_ground
        True
        >>> Poly(y, x).is_ground
        True

        """
        return f.rep.is_ground

    @property
    def is_linear(f):
        """
        Returns ``True`` if ``f`` is linear in all its variables.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x + y + 2, x, y).is_linear
        True
        >>> Poly(x*y + 2, x, y).is_linear
        False

        """
        return f.rep.is_linear

    @property
    def is_quadratic(f):
        """
        Returns ``True`` if ``f`` is quadratic in all its variables.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x*y + 2, x, y).is_quadratic
        True
        >>> Poly(x*y**2 + 2, x, y).is_quadratic
        False

        """
        return f.rep.is_quadratic

    @property
    def is_monomial(f):
        """
        Returns ``True`` if ``f`` is zero or has only one term.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(3*x**2, x).is_monomial
        True
        >>> Poly(3*x**2 + 1, x).is_monomial
        False

        """
        return f.rep.is_monomial

    @property
    def is_homogeneous(f):
        """
        Returns ``True`` if ``f`` is a homogeneous polynomial.

        A homogeneous polynomial is a polynomial whose all monomials with
        non-zero coefficients have the same total degree. If you want not
        only to check if a polynomial is homogeneous but also compute its
        homogeneous order, then use :func:`Poly.homogeneous_order`.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x*y, x, y).is_homogeneous
        True
        >>> Poly(x**3 + x*y, x, y).is_homogeneous
        False

        """
        return f.rep.is_homogeneous

    @property
    def is_irreducible(f):
        """
        Returns ``True`` if ``f`` has no factors over its domain.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> Poly(x**2 + x + 1, x, modulus=2).is_irreducible
        True
        >>> Poly(x**2 + 1, x, modulus=2).is_irreducible
        False

        """
        return f.rep.is_irreducible

    @property
    def is_univariate(f):
        """
        Returns ``True`` if ``f`` is a univariate polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x + 1, x).is_univariate
        True
        >>> Poly(x*y**2 + x*y + 1, x, y).is_univariate
        False
        >>> Poly(x*y**2 + x*y + 1, x).is_univariate
        True
        >>> Poly(x**2 + x + 1, x, y).is_univariate
        False

        """
        return len(f.gens) == 1

    @property
    def is_multivariate(f):
        """
        Returns ``True`` if ``f`` is a multivariate polynomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x, y

        >>> Poly(x**2 + x + 1, x).is_multivariate
        False
        >>> Poly(x*y**2 + x*y + 1, x, y).is_multivariate
        True
        >>> Poly(x*y**2 + x*y + 1, x).is_multivariate
        False
        >>> Poly(x**2 + x + 1, x, y).is_multivariate
        True

        """
        return len(f.gens) != 1

    @property
    def is_cyclotomic(f):
        """
        Returns ``True`` if ``f`` is a cyclotomic polnomial.

        Examples
        ========

        >>> from sympy import Poly
        >>> from sympy.abc import x

        >>> f = x**16 + x**14 - x**10 + x**8 - x**6 + x**2 + 1

        >>> Poly(f).is_cyclotomic
        False

        >>> g = x**16 + x**14 - x**10 - x**8 - x**6 + x**2 + 1

        >>> Poly(g).is_cyclotomic
        True

        """
        return f.rep.is_cyclotomic

    def __abs__(f):
        return f.abs()

    def __neg__(f):
        return f.neg()

    @_polifyit
    def __add__(f, g):
        return f.add(g)

    @_polifyit
    def __radd__(f, g):
        return g.add(f)

    @_polifyit
    def __sub__(f, g):
        return f.sub(g)

    @_polifyit
    def __rsub__(f, g):
        return g.sub(f)

    @_polifyit
    def __mul__(f, g):
        return f.mul(g)

    @_polifyit
    def __rmul__(f, g):
        return g.mul(f)

    @_sympifyit('n', NotImplemented)
    def __pow__(f, n):
        if n.is_Integer and n >= 0:
            return f.pow(n)
        else:
            return NotImplemented

    @_polifyit
    def __divmod__(f, g):
        return f.div(g)

    @_polifyit
    def __rdivmod__(f, g):
        return g.div(f)

    @_polifyit
    def __mod__(f, g):
        return f.rem(g)

    @_polifyit
    def __rmod__(f, g):
        return g.rem(f)

    @_polifyit
    def __floordiv__(f, g):
        return f.quo(g)

    @_polifyit
    def __rfloordiv__(f, g):
        return g.quo(f)

    @_sympifyit('g', NotImplemented)
    def __truediv__(f, g):
        return f.as_expr()/g.as_expr()

    @_sympifyit('g', NotImplemented)
    def __rtruediv__(f, g):
        return g.as_expr()/f.as_expr()

    @_sympifyit('other', NotImplemented)
    def __eq__(self, other):
        f, g = self, other

        if not g.is_Poly:
            try:
                g = f.__class__(g, f.gens, domain=f.get_domain())
            except (PolynomialError, DomainError, CoercionFailed):
                return False

        if f.gens != g.gens:
            return False

        if f.rep.dom != g.rep.dom:
            return False

        return f.rep == g.rep

    @_sympifyit('g', NotImplemented)
    def __ne__(f, g):
        return not f == g

    def __bool__(f):
        return not f.is_zero

    def eq(f, g, strict=False):
        if not strict:
            return f == g
        else:
            return f._strict_eq(sympify(g))

    def ne(f, g, strict=False):
        return not f.eq(g, strict=strict)

    def _strict_eq(f, g):
        return isinstance(g, f.__class__) and f.gens == g.gens and f.rep.eq(g.rep, strict=True)


@public
class PurePoly(Poly):
    """Class for representing pure polynomials. """

    def _hashable_content(self):
        """Allow SymPy to hash Poly instances. """
        return (self.rep,)

    def __hash__(self):
        return super().__hash__()

    @property
    def free_symbols(self):
        """
        Free symbols of a polynomial.

        Examples
        ========

        >>> from sympy import PurePoly
        >>> from sympy.abc import x, y

        >>> PurePoly(x**2 + 1).free_symbols
        set()
        >>> PurePoly(x**2 + y).free_symbols
        set()
        >>> PurePoly(x**2 + y, x).free_symbols
        {y}

        """
        return self.free_symbols_in_domain

    @_sympifyit('other', NotImplemented)
    def __eq__(self, other):
        f, g = self, other

        if not g.is_Poly:
            try:
                g = f.__class__(g, f.gens, domain=f.get_domain())
            except (PolynomialError, DomainError, CoercionFailed):
                return False

        if len(f.gens) != len(g.gens):
            return False

        if f.rep.dom != g.rep.dom:
            try:
                dom = f.rep.dom.unify(g.rep.dom, f.gens)
            except UnificationFailed:
                return False

            f = f.set_domain(dom)
            g = g.set_domain(dom)

        return f.rep == g.rep

    def _strict_eq(f, g):
        return isinstance(g, f.__class__) and f.rep.eq(g.rep, strict=True)

    def _unify(f, g):
        g = sympify(g)

        if not g.is_Poly:
            try:
                return f.rep.dom, f.per, f.rep, f.rep.per(f.rep.dom.from_sympy(g))
            except CoercionFailed:
                raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if len(f.gens) != len(g.gens):
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        if not (isinstance(f.rep, DMP) and isinstance(g.rep, DMP)):
            raise UnificationFailed("Cannot unify %s with %s" % (f, g))

        cls = f.__class__
        gens = f.gens

        dom = f.rep.dom.unify(g.rep.dom, gens)

        F = f.rep.convert(dom)
        G = g.rep.convert(dom)

        def per(rep, dom=dom, gens=gens, remove=None):
            if remove is not None:
                gens = gens[:remove] + gens[remove + 1:]

                if not gens:
                    return dom.to_sympy(rep)

            return cls.new(rep, *gens)

        return dom, per, F, G


@public
def poly_from_expr(expr, *gens, **args):
    """Construct a polynomial from an expression. """
    opt = options.build_options(gens, args)
    return _poly_from_expr(expr, opt)


def _poly_from_expr(expr, opt):
    """Construct a polynomial from an expression. """
    orig, expr = expr, sympify(expr)

    if not isinstance(expr, Basic):
        raise PolificationFailed(opt, orig, expr)
    elif expr.is_Poly:
        poly = expr.__class__._from_poly(expr, opt)

        opt.gens = poly.gens
        opt.domain = poly.domain

        if opt.polys is None:
            opt.polys = True

        return poly, opt
    elif opt.expand:
        expr = expr.expand()

    rep, opt = _dict_from_expr(expr, opt)
    if not opt.gens:
        raise PolificationFailed(opt, orig, expr)

    monoms, coeffs = list(zip(*list(rep.items())))
    domain = opt.domain

    if domain is None:
        opt.domain, coeffs = construct_domain(coeffs, opt=opt)
    else:
        coeffs = list(map(domain.from_sympy, coeffs))

    rep = dict(list(zip(monoms, coeffs)))
    poly = Poly._from_dict(rep, opt)

    if opt.polys is None:
        opt.polys = False

    return poly, opt


@public
def parallel_poly_from_expr(exprs, *gens, **args):
    """Construct polynomials from expressions. """
    opt = options.build_options(gens, args)
    return _parallel_poly_from_expr(exprs, opt)


def _parallel_poly_from_expr(exprs, opt):
    """Construct polynomials from expressions. """
    if len(exprs) == 2:
        f, g = exprs

        if isinstance(f, Poly) and isinstance(g, Poly):
            f = f.__class__._from_poly(f, opt)
            g = g.__class__._from_poly(g, opt)

            f, g = f.unify(g)

            opt.gens = f.gens
            opt.domain = f.domain

            if opt.polys is None:
                opt.polys = True

            return [f, g], opt

    origs, exprs = list(exprs), []
    _exprs, _polys = [], []

    failed = False

    for i, expr in enumerate(origs):
        expr = sympify(expr)

        if isinstance(expr, Basic):
            if expr.is_Poly:
                _polys.append(i)
            else:
                _exprs.append(i)

                if opt.expand:
                    expr = expr.expand()
        else:
            failed = True

        exprs.append(expr)

    if failed:
        raise PolificationFailed(opt, origs, exprs, True)

    if _polys:
        # XXX: this is a temporary solution
        for i in _polys:
            exprs[i] = exprs[i].as_expr()

    reps, opt = _parallel_dict_from_expr(exprs, opt)
    if not opt.gens:
        raise PolificationFailed(opt, origs, exprs, True)

    from sympy.functions.elementary.piecewise import Piecewise
    for k in opt.gens:
        if isinstance(k, Piecewise):
            raise PolynomialError("Piecewise generators do not make sense")

    coeffs_list, lengths = [], []

    all_monoms = []
    all_coeffs = []

    for rep in reps:
        monoms, coeffs = list(zip(*list(rep.items())))

        coeffs_list.extend(coeffs)
        all_monoms.append(monoms)

        lengths.append(len(coeffs))

    domain = opt.domain

    if domain is None:
        opt.domain, coeffs_list = construct_domain(coeffs_list, opt=opt)
    else:
        coeffs_list = list(map(domain.from_sympy, coeffs_list))

    for k in lengths:
        all_coeffs.append(coeffs_list[:k])
        coeffs_list = coeffs_list[k:]

    polys = []

    for monoms, coeffs in zip(all_monoms, all_coeffs):
        rep = dict(list(zip(monoms, coeffs)))
        poly = Poly._from_dict(rep, opt)
        polys.append(poly)

    if opt.polys is None:
        opt.polys = bool(_polys)

    return polys, opt


def _update_args(args, key, value):
    """Add a new ``(key, value)`` pair to arguments ``dict``. """
    args = dict(args)

    if key not in args:
        args[key] = value

    return args


@public
def degree(f, gen=0):
    """
    Return the degree of ``f`` in the given variable.

    The degree of 0 is negative infinity.

    Examples
    ========

    >>> from sympy import degree
    >>> from sympy.abc import x, y

    >>> degree(x**2 + y*x + 1, gen=x)
    2
    >>> degree(x**2 + y*x + 1, gen=y)
    1
    >>> degree(0, x)
    -oo

    See also
    ========

    sympy.polys.polytools.Poly.total_degree
    degree_list
    """

    f = sympify(f, strict=True)
    gen_is_Num = sympify(gen, strict=True).is_Number
    if f.is_Poly:
        p = f
        isNum = p.as_expr().is_Number
    else:
        isNum = f.is_Number
        if not isNum:
            if gen_is_Num:
                p, _ = poly_from_expr(f)
            else:
                p, _ = poly_from_expr(f, gen)

    if isNum:
        return S.Zero if f else S.NegativeInfinity

    if not gen_is_Num:
        if f.is_Poly and gen not in p.gens:
            # try recast without explicit gens
            p, _ = poly_from_expr(f.as_expr())
        if gen not in p.gens:
            return S.Zero
    elif not f.is_Poly and len(f.free_symbols) > 1:
        raise TypeError(filldedent('''
         A symbolic generator of interest is required for a multivariate
         expression like func = %s, e.g. degree(func, gen = %s) instead of
         degree(func, gen = %s).
        ''' % (f, next(ordered(f.free_symbols)), gen)))
    result = p.degree(gen)
    return Integer(result) if isinstance(result, int) else S.NegativeInfinity


@public
def total_degree(f, *gens):
    """
    Return the total_degree of ``f`` in the given variables.

    Examples
    ========
    >>> from sympy import total_degree, Poly
    >>> from sympy.abc import x, y

    >>> total_degree(1)
    0
    >>> total_degree(x + x*y)
    2
    >>> total_degree(x + x*y, x)
    1

    If the expression is a Poly and no variables are given
    then the generators of the Poly will be used:

    >>> p = Poly(x + x*y, y)
    >>> total_degree(p)
    1

    To deal with the underlying expression of the Poly, convert
    it to an Expr:

    >>> total_degree(p.as_expr())
    2

    This is done automatically if any variables are given:

    >>> total_degree(p, x)
    1

    See also
    ========
    degree
    """

    p = sympify(f)
    if p.is_Poly:
        p = p.as_expr()
    if p.is_Number:
        rv = 0
    else:
        if f.is_Poly:
            gens = gens or f.gens
        rv = Poly(p, gens).total_degree()

    return Integer(rv)


@public
def degree_list(f, *gens, **args):
    """
    Return a list of degrees of ``f`` in all variables.

    Examples
    ========

    >>> from sympy import degree_list
    >>> from sympy.abc import x, y

    >>> degree_list(x**2 + y*x + 1)
    (2, 1)

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('degree_list', 1, exc)

    degrees = F.degree_list()

    return tuple(map(Integer, degrees))


@public
def LC(f, *gens, **args):
    """
    Return the leading coefficient of ``f``.

    Examples
    ========

    >>> from sympy import LC
    >>> from sympy.abc import x, y

    >>> LC(4*x**2 + 2*x*y**2 + x*y + 3*y)
    4

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('LC', 1, exc)

    return F.LC(order=opt.order)


@public
def LM(f, *gens, **args):
    """
    Return the leading monomial of ``f``.

    Examples
    ========

    >>> from sympy import LM
    >>> from sympy.abc import x, y

    >>> LM(4*x**2 + 2*x*y**2 + x*y + 3*y)
    x**2

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('LM', 1, exc)

    monom = F.LM(order=opt.order)
    return monom.as_expr()


@public
def LT(f, *gens, **args):
    """
    Return the leading term of ``f``.

    Examples
    ========

    >>> from sympy import LT
    >>> from sympy.abc import x, y

    >>> LT(4*x**2 + 2*x*y**2 + x*y + 3*y)
    4*x**2

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('LT', 1, exc)

    monom, coeff = F.LT(order=opt.order)
    return coeff*monom.as_expr()


@public
def pdiv(f, g, *gens, **args):
    """
    Compute polynomial pseudo-division of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pdiv
    >>> from sympy.abc import x

    >>> pdiv(x**2 + 1, 2*x - 4)
    (2*x + 4, 20)

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('pdiv', 2, exc)

    q, r = F.pdiv(G)

    if not opt.polys:
        return q.as_expr(), r.as_expr()
    else:
        return q, r


@public
def prem(f, g, *gens, **args):
    """
    Compute polynomial pseudo-remainder of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import prem
    >>> from sympy.abc import x

    >>> prem(x**2 + 1, 2*x - 4)
    20

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('prem', 2, exc)

    r = F.prem(G)

    if not opt.polys:
        return r.as_expr()
    else:
        return r


@public
def pquo(f, g, *gens, **args):
    """
    Compute polynomial pseudo-quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pquo
    >>> from sympy.abc import x

    >>> pquo(x**2 + 1, 2*x - 4)
    2*x + 4
    >>> pquo(x**2 - 1, 2*x - 1)
    2*x + 1

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('pquo', 2, exc)

    try:
        q = F.pquo(G)
    except ExactQuotientFailed:
        raise ExactQuotientFailed(f, g)

    if not opt.polys:
        return q.as_expr()
    else:
        return q


@public
def pexquo(f, g, *gens, **args):
    """
    Compute polynomial exact pseudo-quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import pexquo
    >>> from sympy.abc import x

    >>> pexquo(x**2 - 1, 2*x - 2)
    2*x + 2

    >>> pexquo(x**2 + 1, 2*x - 4)
    Traceback (most recent call last):
    ...
    ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('pexquo', 2, exc)

    q = F.pexquo(G)

    if not opt.polys:
        return q.as_expr()
    else:
        return q


@public
def div(f, g, *gens, **args):
    """
    Compute polynomial division of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import div, ZZ, QQ
    >>> from sympy.abc import x

    >>> div(x**2 + 1, 2*x - 4, domain=ZZ)
    (0, x**2 + 1)
    >>> div(x**2 + 1, 2*x - 4, domain=QQ)
    (x/2 + 1, 5)

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('div', 2, exc)

    q, r = F.div(G, auto=opt.auto)

    if not opt.polys:
        return q.as_expr(), r.as_expr()
    else:
        return q, r


@public
def rem(f, g, *gens, **args):
    """
    Compute polynomial remainder of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import rem, ZZ, QQ
    >>> from sympy.abc import x

    >>> rem(x**2 + 1, 2*x - 4, domain=ZZ)
    x**2 + 1
    >>> rem(x**2 + 1, 2*x - 4, domain=QQ)
    5

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('rem', 2, exc)

    r = F.rem(G, auto=opt.auto)

    if not opt.polys:
        return r.as_expr()
    else:
        return r


@public
def quo(f, g, *gens, **args):
    """
    Compute polynomial quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import quo
    >>> from sympy.abc import x

    >>> quo(x**2 + 1, 2*x - 4)
    x/2 + 1
    >>> quo(x**2 - 1, x - 1)
    x + 1

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('quo', 2, exc)

    q = F.quo(G, auto=opt.auto)

    if not opt.polys:
        return q.as_expr()
    else:
        return q


@public
def exquo(f, g, *gens, **args):
    """
    Compute polynomial exact quotient of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import exquo
    >>> from sympy.abc import x

    >>> exquo(x**2 - 1, x - 1)
    x + 1

    >>> exquo(x**2 + 1, 2*x - 4)
    Traceback (most recent call last):
    ...
    ExactQuotientFailed: 2*x - 4 does not divide x**2 + 1

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('exquo', 2, exc)

    q = F.exquo(G, auto=opt.auto)

    if not opt.polys:
        return q.as_expr()
    else:
        return q


@public
def half_gcdex(f, g, *gens, **args):
    """
    Half extended Euclidean algorithm of ``f`` and ``g``.

    Returns ``(s, h)`` such that ``h = gcd(f, g)`` and ``s*f = h (mod g)``.

    Examples
    ========

    >>> from sympy import half_gcdex
    >>> from sympy.abc import x

    >>> half_gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
    (3/5 - x/5, x + 1)

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            s, h = domain.half_gcdex(a, b)
        except NotImplementedError:
            raise ComputationFailed('half_gcdex', 2, exc)
        else:
            return domain.to_sympy(s), domain.to_sympy(h)

    s, h = F.half_gcdex(G, auto=opt.auto)

    if not opt.polys:
        return s.as_expr(), h.as_expr()
    else:
        return s, h


@public
def gcdex(f, g, *gens, **args):
    """
    Extended Euclidean algorithm of ``f`` and ``g``.

    Returns ``(s, t, h)`` such that ``h = gcd(f, g)`` and ``s*f + t*g = h``.

    Examples
    ========

    >>> from sympy import gcdex
    >>> from sympy.abc import x

    >>> gcdex(x**4 - 2*x**3 - 6*x**2 + 12*x + 15, x**3 + x**2 - 4*x - 4)
    (3/5 - x/5, x**2/5 - 6*x/5 + 2, x + 1)

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            s, t, h = domain.gcdex(a, b)
        except NotImplementedError:
            raise ComputationFailed('gcdex', 2, exc)
        else:
            return domain.to_sympy(s), domain.to_sympy(t), domain.to_sympy(h)

    s, t, h = F.gcdex(G, auto=opt.auto)

    if not opt.polys:
        return s.as_expr(), t.as_expr(), h.as_expr()
    else:
        return s, t, h


@public
def invert(f, g, *gens, **args):
    """
    Invert ``f`` modulo ``g`` when possible.

    Examples
    ========

    >>> from sympy import invert, S, mod_inverse
    >>> from sympy.abc import x

    >>> invert(x**2 - 1, 2*x - 1)
    -4/3

    >>> invert(x**2 - 1, x - 1)
    Traceback (most recent call last):
    ...
    NotInvertible: zero divisor

    For more efficient inversion of Rationals,
    use the :obj:`~.mod_inverse` function:

    >>> mod_inverse(3, 5)
    2
    >>> (S(2)/5).invert(S(7)/3)
    5/2

    See Also
    ========

    sympy.core.numbers.mod_inverse

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            return domain.to_sympy(domain.invert(a, b))
        except NotImplementedError:
            raise ComputationFailed('invert', 2, exc)

    h = F.invert(G, auto=opt.auto)

    if not opt.polys:
        return h.as_expr()
    else:
        return h


@public
def subresultants(f, g, *gens, **args):
    """
    Compute subresultant PRS of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import subresultants
    >>> from sympy.abc import x

    >>> subresultants(x**2 + 1, x**2 - 1)
    [x**2 + 1, x**2 - 1, -2]

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('subresultants', 2, exc)

    result = F.subresultants(G)

    if not opt.polys:
        return [r.as_expr() for r in result]
    else:
        return result


@public
def resultant(f, g, *gens, includePRS=False, **args):
    """
    Compute resultant of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import resultant
    >>> from sympy.abc import x

    >>> resultant(x**2 + 1, x**2 - 1)
    4

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('resultant', 2, exc)

    if includePRS:
        result, R = F.resultant(G, includePRS=includePRS)
    else:
        result = F.resultant(G)

    if not opt.polys:
        if includePRS:
            return result.as_expr(), [r.as_expr() for r in R]
        return result.as_expr()
    else:
        if includePRS:
            return result, R
        return result


@public
def discriminant(f, *gens, **args):
    """
    Compute discriminant of ``f``.

    Examples
    ========

    >>> from sympy import discriminant
    >>> from sympy.abc import x

    >>> discriminant(x**2 + 2*x + 3)
    -8

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('discriminant', 1, exc)

    result = F.discriminant()

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def cofactors(f, g, *gens, **args):
    """
    Compute GCD and cofactors of ``f`` and ``g``.

    Returns polynomials ``(h, cff, cfg)`` such that ``h = gcd(f, g)``, and
    ``cff = quo(f, h)`` and ``cfg = quo(g, h)`` are, so called, cofactors
    of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import cofactors
    >>> from sympy.abc import x

    >>> cofactors(x**2 - 1, x**2 - 3*x + 2)
    (x - 1, x + 1, x - 2)

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            h, cff, cfg = domain.cofactors(a, b)
        except NotImplementedError:
            raise ComputationFailed('cofactors', 2, exc)
        else:
            return domain.to_sympy(h), domain.to_sympy(cff), domain.to_sympy(cfg)

    h, cff, cfg = F.cofactors(G)

    if not opt.polys:
        return h.as_expr(), cff.as_expr(), cfg.as_expr()
    else:
        return h, cff, cfg


@public
def gcd_list(seq, *gens, **args):
    """
    Compute GCD of a list of polynomials.

    Examples
    ========

    >>> from sympy import gcd_list
    >>> from sympy.abc import x

    >>> gcd_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
    x - 1

    """
    seq = sympify(seq)

    def try_non_polynomial_gcd(seq):
        if not gens and not args:
            domain, numbers = construct_domain(seq)

            if not numbers:
                return domain.zero
            elif domain.is_Numerical:
                result, numbers = numbers[0], numbers[1:]

                for number in numbers:
                    result = domain.gcd(result, number)

                    if domain.is_one(result):
                        break

                return domain.to_sympy(result)

        return None

    result = try_non_polynomial_gcd(seq)

    if result is not None:
        return result

    options.allowed_flags(args, ['polys'])

    try:
        polys, opt = parallel_poly_from_expr(seq, *gens, **args)

        # gcd for domain Q[irrational] (purely algebraic irrational)
        if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
            a = seq[-1]
            lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
            if all(frc.is_rational for frc in lst):
                lc = 1
                for frc in lst:
                    lc = lcm(lc, frc.as_numer_denom()[0])
                # abs ensures that the gcd is always non-negative
                return abs(a/lc)

    except PolificationFailed as exc:
        result = try_non_polynomial_gcd(exc.exprs)

        if result is not None:
            return result
        else:
            raise ComputationFailed('gcd_list', len(seq), exc)

    if not polys:
        if not opt.polys:
            return S.Zero
        else:
            return Poly(0, opt=opt)

    result, polys = polys[0], polys[1:]

    for poly in polys:
        result = result.gcd(poly)

        if result.is_one:
            break

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def gcd(f, g=None, *gens, **args):
    """
    Compute GCD of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import gcd
    >>> from sympy.abc import x

    >>> gcd(x**2 - 1, x**2 - 3*x + 2)
    x - 1

    """
    if hasattr(f, '__iter__'):
        if g is not None:
            gens = (g,) + gens

        return gcd_list(f, *gens, **args)
    elif g is None:
        raise TypeError("gcd() takes 2 arguments or a sequence of arguments")

    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)

        # gcd for domain Q[irrational] (purely algebraic irrational)
        a, b = map(sympify, (f, g))
        if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
            frc = (a/b).ratsimp()
            if frc.is_rational:
                # abs ensures that the returned gcd is always non-negative
                return abs(a/frc.as_numer_denom()[0])

    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            return domain.to_sympy(domain.gcd(a, b))
        except NotImplementedError:
            raise ComputationFailed('gcd', 2, exc)

    result = F.gcd(G)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def lcm_list(seq, *gens, **args):
    """
    Compute LCM of a list of polynomials.

    Examples
    ========

    >>> from sympy import lcm_list
    >>> from sympy.abc import x

    >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])
    x**5 - x**4 - 2*x**3 - x**2 + x + 2

    """
    seq = sympify(seq)

    def try_non_polynomial_lcm(seq) -> Optional[Expr]:
        if not gens and not args:
            domain, numbers = construct_domain(seq)

            if not numbers:
                return domain.to_sympy(domain.one)
            elif domain.is_Numerical:
                result, numbers = numbers[0], numbers[1:]

                for number in numbers:
                    result = domain.lcm(result, number)

                return domain.to_sympy(result)

        return None

    result = try_non_polynomial_lcm(seq)

    if result is not None:
        return result

    options.allowed_flags(args, ['polys'])

    try:
        polys, opt = parallel_poly_from_expr(seq, *gens, **args)

        # lcm for domain Q[irrational] (purely algebraic irrational)
        if len(seq) > 1 and all(elt.is_algebraic and elt.is_irrational for elt in seq):
            a = seq[-1]
            lst = [ (a/elt).ratsimp() for elt in seq[:-1] ]
            if all(frc.is_rational for frc in lst):
                lc = 1
                for frc in lst:
                    lc = lcm(lc, frc.as_numer_denom()[1])
                return a*lc

    except PolificationFailed as exc:
        result = try_non_polynomial_lcm(exc.exprs)

        if result is not None:
            return result
        else:
            raise ComputationFailed('lcm_list', len(seq), exc)

    if not polys:
        if not opt.polys:
            return S.One
        else:
            return Poly(1, opt=opt)

    result, polys = polys[0], polys[1:]

    for poly in polys:
        result = result.lcm(poly)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def lcm(f, g=None, *gens, **args):
    """
    Compute LCM of ``f`` and ``g``.

    Examples
    ========

    >>> from sympy import lcm
    >>> from sympy.abc import x

    >>> lcm(x**2 - 1, x**2 - 3*x + 2)
    x**3 - 2*x**2 - x + 2

    """
    if hasattr(f, '__iter__'):
        if g is not None:
            gens = (g,) + gens

        return lcm_list(f, *gens, **args)
    elif g is None:
        raise TypeError("lcm() takes 2 arguments or a sequence of arguments")

    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)

        # lcm for domain Q[irrational] (purely algebraic irrational)
        a, b = map(sympify, (f, g))
        if a.is_algebraic and a.is_irrational and b.is_algebraic and b.is_irrational:
            frc = (a/b).ratsimp()
            if frc.is_rational:
                return a*frc.as_numer_denom()[1]

    except PolificationFailed as exc:
        domain, (a, b) = construct_domain(exc.exprs)

        try:
            return domain.to_sympy(domain.lcm(a, b))
        except NotImplementedError:
            raise ComputationFailed('lcm', 2, exc)

    result = F.lcm(G)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def terms_gcd(f, *gens, **args):
    """
    Remove GCD of terms from ``f``.

    If the ``deep`` flag is True, then the arguments of ``f`` will have
    terms_gcd applied to them.

    If a fraction is factored out of ``f`` and ``f`` is an Add, then
    an unevaluated Mul will be returned so that automatic simplification
    does not redistribute it. The hint ``clear``, when set to False, can be
    used to prevent such factoring when all coefficients are not fractions.

    Examples
    ========

    >>> from sympy import terms_gcd, cos
    >>> from sympy.abc import x, y
    >>> terms_gcd(x**6*y**2 + x**3*y, x, y)
    x**3*y*(x**3*y + 1)

    The default action of polys routines is to expand the expression
    given to them. terms_gcd follows this behavior:

    >>> terms_gcd((3+3*x)*(x+x*y))
    3*x*(x*y + x + y + 1)

    If this is not desired then the hint ``expand`` can be set to False.
    In this case the expression will be treated as though it were comprised
    of one or more terms:

    >>> terms_gcd((3+3*x)*(x+x*y), expand=False)
    (3*x + 3)*(x*y + x)

    In order to traverse factors of a Mul or the arguments of other
    functions, the ``deep`` hint can be used:

    >>> terms_gcd((3 + 3*x)*(x + x*y), expand=False, deep=True)
    3*x*(x + 1)*(y + 1)
    >>> terms_gcd(cos(x + x*y), deep=True)
    cos(x*(y + 1))

    Rationals are factored out by default:

    >>> terms_gcd(x + y/2)
    (2*x + y)/2

    Only the y-term had a coefficient that was a fraction; if one
    does not want to factor out the 1/2 in cases like this, the
    flag ``clear`` can be set to False:

    >>> terms_gcd(x + y/2, clear=False)
    x + y/2
    >>> terms_gcd(x*y/2 + y**2, clear=False)
    y*(x/2 + y)

    The ``clear`` flag is ignored if all coefficients are fractions:

    >>> terms_gcd(x/3 + y/2, clear=False)
    (2*x + 3*y)/6

    See Also
    ========
    sympy.core.exprtools.gcd_terms, sympy.core.exprtools.factor_terms

    """

    orig = sympify(f)

    if isinstance(f, Equality):
        return Equality(*(terms_gcd(s, *gens, **args) for s in [f.lhs, f.rhs]))
    elif isinstance(f, Relational):
        raise TypeError("Inequalities cannot be used with terms_gcd. Found: %s" %(f,))

    if not isinstance(f, Expr) or f.is_Atom:
        return orig

    if args.get('deep', False):
        new = f.func(*[terms_gcd(a, *gens, **args) for a in f.args])
        args.pop('deep')
        args['expand'] = False
        return terms_gcd(new, *gens, **args)

    clear = args.pop('clear', True)
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        return exc.expr

    J, f = F.terms_gcd()

    if opt.domain.is_Ring:
        if opt.domain.is_Field:
            denom, f = f.clear_denoms(convert=True)

        coeff, f = f.primitive()

        if opt.domain.is_Field:
            coeff /= denom
    else:
        coeff = S.One

    term = Mul(*[x**j for x, j in zip(f.gens, J)])
    if equal_valued(coeff, 1):
        coeff = S.One
        if term == 1:
            return orig

    if clear:
        return _keep_coeff(coeff, term*f.as_expr())
    # base the clearing on the form of the original expression, not
    # the (perhaps) Mul that we have now
    coeff, f = _keep_coeff(coeff, f.as_expr(), clear=False).as_coeff_Mul()
    return _keep_coeff(coeff, term*f, clear=False)


@public
def trunc(f, p, *gens, **args):
    """
    Reduce ``f`` modulo a constant ``p``.

    Examples
    ========

    >>> from sympy import trunc
    >>> from sympy.abc import x

    >>> trunc(2*x**3 + 3*x**2 + 5*x + 7, 3)
    -x**3 - x + 1

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('trunc', 1, exc)

    result = F.trunc(sympify(p))

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def monic(f, *gens, **args):
    """
    Divide all coefficients of ``f`` by ``LC(f)``.

    Examples
    ========

    >>> from sympy import monic
    >>> from sympy.abc import x

    >>> monic(3*x**2 + 4*x + 2)
    x**2 + 4*x/3 + 2/3

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('monic', 1, exc)

    result = F.monic(auto=opt.auto)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def content(f, *gens, **args):
    """
    Compute GCD of coefficients of ``f``.

    Examples
    ========

    >>> from sympy import content
    >>> from sympy.abc import x

    >>> content(6*x**2 + 8*x + 12)
    2

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('content', 1, exc)

    return F.content()


@public
def primitive(f, *gens, **args):
    """
    Compute content and the primitive form of ``f``.

    Examples
    ========

    >>> from sympy.polys.polytools import primitive
    >>> from sympy.abc import x

    >>> primitive(6*x**2 + 8*x + 12)
    (2, 3*x**2 + 4*x + 6)

    >>> eq = (2 + 2*x)*x + 2

    Expansion is performed by default:

    >>> primitive(eq)
    (2, x**2 + x + 1)

    Set ``expand`` to False to shut this off. Note that the
    extraction will not be recursive; use the as_content_primitive method
    for recursive, non-destructive Rational extraction.

    >>> primitive(eq, expand=False)
    (1, x*(2*x + 2) + 2)

    >>> eq.as_content_primitive()
    (2, x*(x + 1) + 1)

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('primitive', 1, exc)

    cont, result = F.primitive()
    if not opt.polys:
        return cont, result.as_expr()
    else:
        return cont, result


@public
def compose(f, g, *gens, **args):
    """
    Compute functional composition ``f(g)``.

    Examples
    ========

    >>> from sympy import compose
    >>> from sympy.abc import x

    >>> compose(x**2 + x, x - 1)
    x**2 - x

    """
    options.allowed_flags(args, ['polys'])

    try:
        (F, G), opt = parallel_poly_from_expr((f, g), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('compose', 2, exc)

    result = F.compose(G)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def decompose(f, *gens, **args):
    """
    Compute functional decomposition of ``f``.

    Examples
    ========

    >>> from sympy import decompose
    >>> from sympy.abc import x

    >>> decompose(x**4 + 2*x**3 - x - 1)
    [x**2 - x - 1, x**2 + x]

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('decompose', 1, exc)

    result = F.decompose()

    if not opt.polys:
        return [r.as_expr() for r in result]
    else:
        return result


@public
def sturm(f, *gens, **args):
    """
    Compute Sturm sequence of ``f``.

    Examples
    ========

    >>> from sympy import sturm
    >>> from sympy.abc import x

    >>> sturm(x**3 - 2*x**2 + x - 3)
    [x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2*x/9 + 25/9, -2079/4]

    """
    options.allowed_flags(args, ['auto', 'polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('sturm', 1, exc)

    result = F.sturm(auto=opt.auto)

    if not opt.polys:
        return [r.as_expr() for r in result]
    else:
        return result


@public
def gff_list(f, *gens, **args):
    """
    Compute a list of greatest factorial factors of ``f``.

    Note that the input to ff() and rf() should be Poly instances to use the
    definitions here.

    Examples
    ========

    >>> from sympy import gff_list, ff, Poly
    >>> from sympy.abc import x

    >>> f = Poly(x**5 + 2*x**4 - x**3 - 2*x**2, x)

    >>> gff_list(f)
    [(Poly(x, x, domain='ZZ'), 1), (Poly(x + 2, x, domain='ZZ'), 4)]

    >>> (ff(Poly(x), 1)*ff(Poly(x + 2), 4)) == f
    True

    >>> f = Poly(x**12 + 6*x**11 - 11*x**10 - 56*x**9 + 220*x**8 + 208*x**7 - \
        1401*x**6 + 1090*x**5 + 2715*x**4 - 6720*x**3 - 1092*x**2 + 5040*x, x)

    >>> gff_list(f)
    [(Poly(x**3 + 7, x, domain='ZZ'), 2), (Poly(x**2 + 5*x, x, domain='ZZ'), 3)]

    >>> ff(Poly(x**3 + 7, x), 2)*ff(Poly(x**2 + 5*x, x), 3) == f
    True

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('gff_list', 1, exc)

    factors = F.gff_list()

    if not opt.polys:
        return [(g.as_expr(), k) for g, k in factors]
    else:
        return factors


@public
def gff(f, *gens, **args):
    """Compute greatest factorial factorization of ``f``. """
    raise NotImplementedError('symbolic falling factorial')


@public
def sqf_norm(f, *gens, **args):
    """
    Compute square-free norm of ``f``.

    Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and
    ``r(x) = Norm(g(x))`` is a square-free polynomial over ``K``,
    where ``a`` is the algebraic extension of the ground domain.

    Examples
    ========

    >>> from sympy import sqf_norm, sqrt
    >>> from sympy.abc import x

    >>> sqf_norm(x**2 + 1, extension=[sqrt(3)])
    (1, x**2 - 2*sqrt(3)*x + 4, x**4 - 4*x**2 + 16)

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('sqf_norm', 1, exc)

    s, g, r = F.sqf_norm()

    if not opt.polys:
        return Integer(s), g.as_expr(), r.as_expr()
    else:
        return Integer(s), g, r


@public
def sqf_part(f, *gens, **args):
    """
    Compute square-free part of ``f``.

    Examples
    ========

    >>> from sympy import sqf_part
    >>> from sympy.abc import x

    >>> sqf_part(x**3 - 3*x - 2)
    x**2 - x - 2

    """
    options.allowed_flags(args, ['polys'])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('sqf_part', 1, exc)

    result = F.sqf_part()

    if not opt.polys:
        return result.as_expr()
    else:
        return result


def _sorted_factors(factors, method):
    """Sort a list of ``(expr, exp)`` pairs. """
    if method == 'sqf':
        def key(obj):
            poly, exp = obj
            rep = poly.rep.rep
            return (exp, len(rep), len(poly.gens), str(poly.domain), rep)
    else:
        def key(obj):
            poly, exp = obj
            rep = poly.rep.rep
            return (len(rep), len(poly.gens), exp, str(poly.domain), rep)

    return sorted(factors, key=key)


def _factors_product(factors):
    """Multiply a list of ``(expr, exp)`` pairs. """
    return Mul(*[f.as_expr()**k for f, k in factors])


def _symbolic_factor_list(expr, opt, method):
    """Helper function for :func:`_symbolic_factor`. """
    coeff, factors = S.One, []

    args = [i._eval_factor() if hasattr(i, '_eval_factor') else i
        for i in Mul.make_args(expr)]
    for arg in args:
        if arg.is_Number or (isinstance(arg, Expr) and pure_complex(arg)):
            coeff *= arg
            continue
        elif arg.is_Pow and arg.base != S.Exp1:
            base, exp = arg.args
            if base.is_Number and exp.is_Number:
                coeff *= arg
                continue
            if base.is_Number:
                factors.append((base, exp))
                continue
        else:
            base, exp = arg, S.One

        try:
            poly, _ = _poly_from_expr(base, opt)
        except PolificationFailed as exc:
            factors.append((exc.expr, exp))
        else:
            func = getattr(poly, method + '_list')

            _coeff, _factors = func()
            if _coeff is not S.One:
                if exp.is_Integer:
                    coeff *= _coeff**exp
                elif _coeff.is_positive:
                    factors.append((_coeff, exp))
                else:
                    _factors.append((_coeff, S.One))

            if exp is S.One:
                factors.extend(_factors)
            elif exp.is_integer:
                factors.extend([(f, k*exp) for f, k in _factors])
            else:
                other = []

                for f, k in _factors:
                    if f.as_expr().is_positive:
                        factors.append((f, k*exp))
                    else:
                        other.append((f, k))

                factors.append((_factors_product(other), exp))
    if method == 'sqf':
        factors = [(reduce(mul, (f for f, _ in factors if _ == k)), k)
                   for k in {i for _, i in factors}]

    return coeff, factors


def _symbolic_factor(expr, opt, method):
    """Helper function for :func:`_factor`. """
    if isinstance(expr, Expr):
        if hasattr(expr,'_eval_factor'):
            return expr._eval_factor()
        coeff, factors = _symbolic_factor_list(together(expr, fraction=opt['fraction']), opt, method)
        return _keep_coeff(coeff, _factors_product(factors))
    elif hasattr(expr, 'args'):
        return expr.func(*[_symbolic_factor(arg, opt, method) for arg in expr.args])
    elif hasattr(expr, '__iter__'):
        return expr.__class__([_symbolic_factor(arg, opt, method) for arg in expr])
    else:
        return expr


def _generic_factor_list(expr, gens, args, method):
    """Helper function for :func:`sqf_list` and :func:`factor_list`. """
    options.allowed_flags(args, ['frac', 'polys'])
    opt = options.build_options(gens, args)

    expr = sympify(expr)

    if isinstance(expr, (Expr, Poly)):
        if isinstance(expr, Poly):
            numer, denom = expr, 1
        else:
            numer, denom = together(expr).as_numer_denom()

        cp, fp = _symbolic_factor_list(numer, opt, method)
        cq, fq = _symbolic_factor_list(denom, opt, method)

        if fq and not opt.frac:
            raise PolynomialError("a polynomial expected, got %s" % expr)

        _opt = opt.clone({"expand": True})

        for factors in (fp, fq):
            for i, (f, k) in enumerate(factors):
                if not f.is_Poly:
                    f, _ = _poly_from_expr(f, _opt)
                    factors[i] = (f, k)

        fp = _sorted_factors(fp, method)
        fq = _sorted_factors(fq, method)

        if not opt.polys:
            fp = [(f.as_expr(), k) for f, k in fp]
            fq = [(f.as_expr(), k) for f, k in fq]

        coeff = cp/cq

        if not opt.frac:
            return coeff, fp
        else:
            return coeff, fp, fq
    else:
        raise PolynomialError("a polynomial expected, got %s" % expr)


def _generic_factor(expr, gens, args, method):
    """Helper function for :func:`sqf` and :func:`factor`. """
    fraction = args.pop('fraction', True)
    options.allowed_flags(args, [])
    opt = options.build_options(gens, args)
    opt['fraction'] = fraction
    return _symbolic_factor(sympify(expr), opt, method)


def to_rational_coeffs(f):
    """
    try to transform a polynomial to have rational coefficients

    try to find a transformation ``x = alpha*y``

    ``f(x) = lc*alpha**n * g(y)`` where ``g`` is a polynomial with
    rational coefficients, ``lc`` the leading coefficient.

    If this fails, try ``x = y + beta``
    ``f(x) = g(y)``

    Returns ``None`` if ``g`` not found;
    ``(lc, alpha, None, g)`` in case of rescaling
    ``(None, None, beta, g)`` in case of translation

    Notes
    =====

    Currently it transforms only polynomials without roots larger than 2.

    Examples
    ========

    >>> from sympy import sqrt, Poly, simplify
    >>> from sympy.polys.polytools import to_rational_coeffs
    >>> from sympy.abc import x
    >>> p = Poly(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}), x, domain='EX')
    >>> lc, r, _, g = to_rational_coeffs(p)
    >>> lc, r
    (7 + 5*sqrt(2), 2 - 2*sqrt(2))
    >>> g
    Poly(x**3 + x**2 - 1/4*x - 1/4, x, domain='QQ')
    >>> r1 = simplify(1/r)
    >>> Poly(lc*r**3*(g.as_expr()).subs({x:x*r1}), x, domain='EX') == p
    True

    """
    from sympy.simplify.simplify import simplify

    def _try_rescale(f, f1=None):
        """
        try rescaling ``x -> alpha*x`` to convert f to a polynomial
        with rational coefficients.
        Returns ``alpha, f``; if the rescaling is successful,
        ``alpha`` is the rescaling factor, and ``f`` is the rescaled
        polynomial; else ``alpha`` is ``None``.
        """
        if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
            return None, f
        n = f.degree()
        lc = f.LC()
        f1 = f1 or f1.monic()
        coeffs = f1.all_coeffs()[1:]
        coeffs = [simplify(coeffx) for coeffx in coeffs]
        if len(coeffs) > 1 and coeffs[-2]:
            rescale1_x = simplify(coeffs[-2]/coeffs[-1])
            coeffs1 = []
            for i in range(len(coeffs)):
                coeffx = simplify(coeffs[i]*rescale1_x**(i + 1))
                if not coeffx.is_rational:
                    break
                coeffs1.append(coeffx)
            else:
                rescale_x = simplify(1/rescale1_x)
                x = f.gens[0]
                v = [x**n]
                for i in range(1, n + 1):
                    v.append(coeffs1[i - 1]*x**(n - i))
                f = Add(*v)
                f = Poly(f)
                return lc, rescale_x, f
        return None

    def _try_translate(f, f1=None):
        """
        try translating ``x -> x + alpha`` to convert f to a polynomial
        with rational coefficients.
        Returns ``alpha, f``; if the translating is successful,
        ``alpha`` is the translating factor, and ``f`` is the shifted
        polynomial; else ``alpha`` is ``None``.
        """
        if not len(f.gens) == 1 or not (f.gens[0]).is_Atom:
            return None, f
        n = f.degree()
        f1 = f1 or f1.monic()
        coeffs = f1.all_coeffs()[1:]
        c = simplify(coeffs[0])
        if c.is_Add and not c.is_rational:
            rat, nonrat = sift(c.args,
                lambda z: z.is_rational is True, binary=True)
            alpha = -c.func(*nonrat)/n
            f2 = f1.shift(alpha)
            return alpha, f2
        return None

    def _has_square_roots(p):
        """
        Return True if ``f`` is a sum with square roots but no other root
        """
        coeffs = p.coeffs()
        has_sq = False
        for y in coeffs:
            for x in Add.make_args(y):
                f = Factors(x).factors
                r = [wx.q for b, wx in f.items() if
                    b.is_number and wx.is_Rational and wx.q >= 2]
                if not r:
                    continue
                if min(r) == 2:
                    has_sq = True
                if max(r) > 2:
                    return False
        return has_sq

    if f.get_domain().is_EX and _has_square_roots(f):
        f1 = f.monic()
        r = _try_rescale(f, f1)
        if r:
            return r[0], r[1], None, r[2]
        else:
            r = _try_translate(f, f1)
            if r:
                return None, None, r[0], r[1]
    return None


def _torational_factor_list(p, x):
    """
    helper function to factor polynomial using to_rational_coeffs

    Examples
    ========

    >>> from sympy.polys.polytools import _torational_factor_list
    >>> from sympy.abc import x
    >>> from sympy import sqrt, expand, Mul
    >>> p = expand(((x**2-1)*(x-2)).subs({x:x*(1 + sqrt(2))}))
    >>> factors = _torational_factor_list(p, x); factors
    (-2, [(-x*(1 + sqrt(2))/2 + 1, 1), (-x*(1 + sqrt(2)) - 1, 1), (-x*(1 + sqrt(2)) + 1, 1)])
    >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
    True
    >>> p = expand(((x**2-1)*(x-2)).subs({x:x + sqrt(2)}))
    >>> factors = _torational_factor_list(p, x); factors
    (1, [(x - 2 + sqrt(2), 1), (x - 1 + sqrt(2), 1), (x + 1 + sqrt(2), 1)])
    >>> expand(factors[0]*Mul(*[z[0] for z in factors[1]])) == p
    True

    """
    from sympy.simplify.simplify import simplify
    p1 = Poly(p, x, domain='EX')
    n = p1.degree()
    res = to_rational_coeffs(p1)
    if not res:
        return None
    lc, r, t, g = res
    factors = factor_list(g.as_expr())
    if lc:
        c = simplify(factors[0]*lc*r**n)
        r1 = simplify(1/r)
        a = []
        for z in factors[1:][0]:
            a.append((simplify(z[0].subs({x: x*r1})), z[1]))
    else:
        c = factors[0]
        a = []
        for z in factors[1:][0]:
            a.append((z[0].subs({x: x - t}), z[1]))
    return (c, a)


@public
def sqf_list(f, *gens, **args):
    """
    Compute a list of square-free factors of ``f``.

    Examples
    ========

    >>> from sympy import sqf_list
    >>> from sympy.abc import x

    >>> sqf_list(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
    (2, [(x + 1, 2), (x + 2, 3)])

    """
    return _generic_factor_list(f, gens, args, method='sqf')


@public
def sqf(f, *gens, **args):
    """
    Compute square-free factorization of ``f``.

    Examples
    ========

    >>> from sympy import sqf
    >>> from sympy.abc import x

    >>> sqf(2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16)
    2*(x + 1)**2*(x + 2)**3

    """
    return _generic_factor(f, gens, args, method='sqf')


@public
def factor_list(f, *gens, **args):
    """
    Compute a list of irreducible factors of ``f``.

    Examples
    ========

    >>> from sympy import factor_list
    >>> from sympy.abc import x, y

    >>> factor_list(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
    (2, [(x + y, 1), (x**2 + 1, 2)])

    """
    return _generic_factor_list(f, gens, args, method='factor')


@public
def factor(f, *gens, deep=False, **args):
    """
    Compute the factorization of expression, ``f``, into irreducibles. (To
    factor an integer into primes, use ``factorint``.)

    There two modes implemented: symbolic and formal. If ``f`` is not an
    instance of :class:`Poly` and generators are not specified, then the
    former mode is used. Otherwise, the formal mode is used.

    In symbolic mode, :func:`factor` will traverse the expression tree and
    factor its components without any prior expansion, unless an instance
    of :class:`~.Add` is encountered (in this case formal factorization is
    used). This way :func:`factor` can handle large or symbolic exponents.

    By default, the factorization is computed over the rationals. To factor
    over other domain, e.g. an algebraic or finite field, use appropriate
    options: ``extension``, ``modulus`` or ``domain``.

    Examples
    ========

    >>> from sympy import factor, sqrt, exp
    >>> from sympy.abc import x, y

    >>> factor(2*x**5 + 2*x**4*y + 4*x**3 + 4*x**2*y + 2*x + 2*y)
    2*(x + y)*(x**2 + 1)**2

    >>> factor(x**2 + 1)
    x**2 + 1
    >>> factor(x**2 + 1, modulus=2)
    (x + 1)**2
    >>> factor(x**2 + 1, gaussian=True)
    (x - I)*(x + I)

    >>> factor(x**2 - 2, extension=sqrt(2))
    (x - sqrt(2))*(x + sqrt(2))

    >>> factor((x**2 - 1)/(x**2 + 4*x + 4))
    (x - 1)*(x + 1)/(x + 2)**2
    >>> factor((x**2 + 4*x + 4)**10000000*(x**2 + 1))
    (x + 2)**20000000*(x**2 + 1)

    By default, factor deals with an expression as a whole:

    >>> eq = 2**(x**2 + 2*x + 1)
    >>> factor(eq)
    2**(x**2 + 2*x + 1)

    If the ``deep`` flag is True then subexpressions will
    be factored:

    >>> factor(eq, deep=True)
    2**((x + 1)**2)

    If the ``fraction`` flag is False then rational expressions
    will not be combined. By default it is True.

    >>> factor(5*x + 3*exp(2 - 7*x), deep=True)
    (5*x*exp(7*x) + 3*exp(2))*exp(-7*x)
    >>> factor(5*x + 3*exp(2 - 7*x), deep=True, fraction=False)
    5*x + 3*exp(2)*exp(-7*x)

    See Also
    ========
    sympy.ntheory.factor_.factorint

    """
    f = sympify(f)
    if deep:
        def _try_factor(expr):
            """
            Factor, but avoid changing the expression when unable to.
            """
            fac = factor(expr, *gens, **args)
            if fac.is_Mul or fac.is_Pow:
                return fac
            return expr

        f = bottom_up(f, _try_factor)
        # clean up any subexpressions that may have been expanded
        # while factoring out a larger expression
        partials = {}
        muladd = f.atoms(Mul, Add)
        for p in muladd:
            fac = factor(p, *gens, **args)
            if (fac.is_Mul or fac.is_Pow) and fac != p:
                partials[p] = fac
        return f.xreplace(partials)

    try:
        return _generic_factor(f, gens, args, method='factor')
    except PolynomialError as msg:
        if not f.is_commutative:
            return factor_nc(f)
        else:
            raise PolynomialError(msg)


@public
def intervals(F, all=False, eps=None, inf=None, sup=None, strict=False, fast=False, sqf=False):
    """
    Compute isolating intervals for roots of ``f``.

    Examples
    ========

    >>> from sympy import intervals
    >>> from sympy.abc import x

    >>> intervals(x**2 - 3)
    [((-2, -1), 1), ((1, 2), 1)]
    >>> intervals(x**2 - 3, eps=1e-2)
    [((-26/15, -19/11), 1), ((19/11, 26/15), 1)]

    """
    if not hasattr(F, '__iter__'):
        try:
            F = Poly(F)
        except GeneratorsNeeded:
            return []

        return F.intervals(all=all, eps=eps, inf=inf, sup=sup, fast=fast, sqf=sqf)
    else:
        polys, opt = parallel_poly_from_expr(F, domain='QQ')

        if len(opt.gens) > 1:
            raise MultivariatePolynomialError

        for i, poly in enumerate(polys):
            polys[i] = poly.rep.rep

        if eps is not None:
            eps = opt.domain.convert(eps)

            if eps <= 0:
                raise ValueError("'eps' must be a positive rational")

        if inf is not None:
            inf = opt.domain.convert(inf)
        if sup is not None:
            sup = opt.domain.convert(sup)

        intervals = dup_isolate_real_roots_list(polys, opt.domain,
            eps=eps, inf=inf, sup=sup, strict=strict, fast=fast)

        result = []

        for (s, t), indices in intervals:
            s, t = opt.domain.to_sympy(s), opt.domain.to_sympy(t)
            result.append(((s, t), indices))

        return result


@public
def refine_root(f, s, t, eps=None, steps=None, fast=False, check_sqf=False):
    """
    Refine an isolating interval of a root to the given precision.

    Examples
    ========

    >>> from sympy import refine_root
    >>> from sympy.abc import x

    >>> refine_root(x**2 - 3, 1, 2, eps=1e-2)
    (19/11, 26/15)

    """
    try:
        F = Poly(f)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except GeneratorsNeeded:
        raise PolynomialError(
            "Cannot refine a root of %s, not a polynomial" % f)

    return F.refine_root(s, t, eps=eps, steps=steps, fast=fast, check_sqf=check_sqf)


@public
def count_roots(f, inf=None, sup=None):
    """
    Return the number of roots of ``f`` in ``[inf, sup]`` interval.

    If one of ``inf`` or ``sup`` is complex, it will return the number of roots
    in the complex rectangle with corners at ``inf`` and ``sup``.

    Examples
    ========

    >>> from sympy import count_roots, I
    >>> from sympy.abc import x

    >>> count_roots(x**4 - 4, -3, 3)
    2
    >>> count_roots(x**4 - 4, 0, 1 + 3*I)
    1

    """
    try:
        F = Poly(f, greedy=False)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except GeneratorsNeeded:
        raise PolynomialError("Cannot count roots of %s, not a polynomial" % f)

    return F.count_roots(inf=inf, sup=sup)


@public
def real_roots(f, multiple=True):
    """
    Return a list of real roots with multiplicities of ``f``.

    Examples
    ========

    >>> from sympy import real_roots
    >>> from sympy.abc import x

    >>> real_roots(2*x**3 - 7*x**2 + 4*x + 4)
    [-1/2, 2, 2]
    """
    try:
        F = Poly(f, greedy=False)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except GeneratorsNeeded:
        raise PolynomialError(
            "Cannot compute real roots of %s, not a polynomial" % f)

    return F.real_roots(multiple=multiple)


@public
def nroots(f, n=15, maxsteps=50, cleanup=True):
    """
    Compute numerical approximations of roots of ``f``.

    Examples
    ========

    >>> from sympy import nroots
    >>> from sympy.abc import x

    >>> nroots(x**2 - 3, n=15)
    [-1.73205080756888, 1.73205080756888]
    >>> nroots(x**2 - 3, n=30)
    [-1.73205080756887729352744634151, 1.73205080756887729352744634151]

    """
    try:
        F = Poly(f, greedy=False)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except GeneratorsNeeded:
        raise PolynomialError(
            "Cannot compute numerical roots of %s, not a polynomial" % f)

    return F.nroots(n=n, maxsteps=maxsteps, cleanup=cleanup)


@public
def ground_roots(f, *gens, **args):
    """
    Compute roots of ``f`` by factorization in the ground domain.

    Examples
    ========

    >>> from sympy import ground_roots
    >>> from sympy.abc import x

    >>> ground_roots(x**6 - 4*x**4 + 4*x**3 - x**2)
    {0: 2, 1: 2}

    """
    options.allowed_flags(args, [])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except PolificationFailed as exc:
        raise ComputationFailed('ground_roots', 1, exc)

    return F.ground_roots()


@public
def nth_power_roots_poly(f, n, *gens, **args):
    """
    Construct a polynomial with n-th powers of roots of ``f``.

    Examples
    ========

    >>> from sympy import nth_power_roots_poly, factor, roots
    >>> from sympy.abc import x

    >>> f = x**4 - x**2 + 1
    >>> g = factor(nth_power_roots_poly(f, 2))

    >>> g
    (x**2 - x + 1)**2

    >>> R_f = [ (r**2).expand() for r in roots(f) ]
    >>> R_g = roots(g).keys()

    >>> set(R_f) == set(R_g)
    True

    """
    options.allowed_flags(args, [])

    try:
        F, opt = poly_from_expr(f, *gens, **args)
        if not isinstance(f, Poly) and not F.gen.is_Symbol:
            # root of sin(x) + 1 is -1 but when someone
            # passes an Expr instead of Poly they may not expect
            # that the generator will be sin(x), not x
            raise PolynomialError("generator must be a Symbol")
    except PolificationFailed as exc:
        raise ComputationFailed('nth_power_roots_poly', 1, exc)

    result = F.nth_power_roots_poly(n)

    if not opt.polys:
        return result.as_expr()
    else:
        return result


@public
def cancel(f, *gens, _signsimp=True, **args):
    """
    Cancel common factors in a rational function ``f``.

    Examples
    ========

    >>> from sympy import cancel, sqrt, Symbol, together
    >>> from sympy.abc import x
    >>> A = Symbol('A', commutative=False)

    >>> cancel((2*x**2 - 2)/(x**2 - 2*x + 1))
    (2*x + 2)/(x - 1)
    >>> cancel((sqrt(3) + sqrt(15)*A)/(sqrt(2) + sqrt(10)*A))
    sqrt(6)/2

    Note: due to automatic distribution of Rationals, a sum divided by an integer
    will appear as a sum. To recover a rational form use `together` on the result:

    >>> cancel(x/2 + 1)
    x/2 + 1
    >>> together(_)
    (x + 2)/2
    """
    from sympy.simplify.simplify import signsimp
    from sympy.polys.rings import sring
    options.allowed_flags(args, ['polys'])

    f = sympify(f)
    if _signsimp:
        f = signsimp(f)
    opt = {}
    if 'polys' in args:
        opt['polys'] = args['polys']

    if not isinstance(f, (tuple, Tuple)):
        if f.is_Number or isinstance(f, Relational) or not isinstance(f, Expr):
            return f
        f = factor_terms(f, radical=True)
        p, q = f.as_numer_denom()

    elif len(f) == 2:
        p, q = f
        if isinstance(p, Poly) and isinstance(q, Poly):
            opt['gens'] = p.gens
            opt['domain'] = p.domain
            opt['polys'] = opt.get('polys', True)
        p, q = p.as_expr(), q.as_expr()
    elif isinstance(f, Tuple):
        return factor_terms(f)
    else:
        raise ValueError('unexpected argument: %s' % f)

    from sympy.functions.elementary.piecewise import Piecewise
    try:
        if f.has(Piecewise):
            raise PolynomialError()
        R, (F, G) = sring((p, q), *gens, **args)
        if not R.ngens:
            if not isinstance(f, (tuple, Tuple)):
                return f.expand()
            else:
                return S.One, p, q
    except PolynomialError as msg:
        if f.is_commutative and not f.has(Piecewise):
            raise PolynomialError(msg)
        # Handling of noncommutative and/or piecewise expressions
        if f.is_Add or f.is_Mul:
            c, nc = sift(f.args, lambda x:
                x.is_commutative is True and not x.has(Piecewise),
                binary=True)
            nc = [cancel(i) for i in nc]
            return f.func(cancel(f.func(*c)), *nc)
        else:
            reps = []
            pot = preorder_traversal(f)
            next(pot)
            for e in pot:
                # XXX: This should really skip anything that's not Expr.
                if isinstance(e, (tuple, Tuple, BooleanAtom)):
                    continue
                try:
                    reps.append((e, cancel(e)))
                    pot.skip()  # this was handled successfully
                except NotImplementedError:
                    pass
            return f.xreplace(dict(reps))

    c, (P, Q) = 1, F.cancel(G)
    if opt.get('polys', False) and 'gens' not in opt:
        opt['gens'] = R.symbols

    if not isinstance(f, (tuple, Tuple)):
        return c*(P.as_expr()/Q.as_expr())
    else:
        P, Q = P.as_expr(), Q.as_expr()
        if not opt.get('polys', False):
            return c, P, Q
        else:
            return c, Poly(P, *gens, **opt), Poly(Q, *gens, **opt)


@public
def reduced(f, G, *gens, **args):
    """
    Reduces a polynomial ``f`` modulo a set of polynomials ``G``.

    Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
    computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
    such that ``f = q_1*g_1 + ... + q_n*g_n + r``, where ``r`` vanishes or ``r``
    is a completely reduced polynomial with respect to ``G``.

    Examples
    ========

    >>> from sympy import reduced
    >>> from sympy.abc import x, y

    >>> reduced(2*x**4 + y**2 - x**2 + y**3, [x**3 - x, y**3 - y])
    ([2*x, 1], x**2 + y**2 + y)

    """
    options.allowed_flags(args, ['polys', 'auto'])

    try:
        polys, opt = parallel_poly_from_expr([f] + list(G), *gens, **args)
    except PolificationFailed as exc:
        raise ComputationFailed('reduced', 0, exc)

    domain = opt.domain
    retract = False

    if opt.auto and domain.is_Ring and not domain.is_Field:
        opt = opt.clone({"domain": domain.get_field()})
        retract = True

    from sympy.polys.rings import xring
    _ring, _ = xring(opt.gens, opt.domain, opt.order)

    for i, poly in enumerate(polys):
        poly = poly.set_domain(opt.domain).rep.to_dict()
        polys[i] = _ring.from_dict(poly)

    Q, r = polys[0].div(polys[1:])

    Q = [Poly._from_dict(dict(q), opt) for q in Q]
    r = Poly._from_dict(dict(r), opt)

    if retract:
        try:
            _Q, _r = [q.to_ring() for q in Q], r.to_ring()
        except CoercionFailed:
            pass
        else:
            Q, r = _Q, _r

    if not opt.polys:
        return [q.as_expr() for q in Q], r.as_expr()
    else:
        return Q, r


@public
def groebner(F, *gens, **args):
    """
    Computes the reduced Groebner basis for a set of polynomials.

    Use the ``order`` argument to set the monomial ordering that will be
    used to compute the basis. Allowed orders are ``lex``, ``grlex`` and
    ``grevlex``. If no order is specified, it defaults to ``lex``.

    For more information on Groebner bases, see the references and the docstring
    of :func:`~.solve_poly_system`.

    Examples
    ========

    Example taken from [1].

    >>> from sympy import groebner
    >>> from sympy.abc import x, y

    >>> F = [x*y - 2*y, 2*y**2 - x**2]

    >>> groebner(F, x, y, order='lex')
    GroebnerBasis([x**2 - 2*y**2, x*y - 2*y, y**3 - 2*y], x, y,
                  domain='ZZ', order='lex')
    >>> groebner(F, x, y, order='grlex')
    GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
                  domain='ZZ', order='grlex')
    >>> groebner(F, x, y, order='grevlex')
    GroebnerBasis([y**3 - 2*y, x**2 - 2*y**2, x*y - 2*y], x, y,
                  domain='ZZ', order='grevlex')

    By default, an improved implementation of the Buchberger algorithm is
    used. Optionally, an implementation of the F5B algorithm can be used. The
    algorithm can be set using the ``method`` flag or with the
    :func:`sympy.polys.polyconfig.setup` function.

    >>> F = [x**2 - x - 1, (2*x - 1) * y - (x**10 - (1 - x)**10)]

    >>> groebner(F, x, y, method='buchberger')
    GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')
    >>> groebner(F, x, y, method='f5b')
    GroebnerBasis([x**2 - x - 1, y - 55], x, y, domain='ZZ', order='lex')

    References
    ==========

    1. [Buchberger01]_
    2. [Cox97]_

    """
    return GroebnerBasis(F, *gens, **args)


@public
def is_zero_dimensional(F, *gens, **args):
    """
    Checks if the ideal generated by a Groebner basis is zero-dimensional.

    The algorithm checks if the set of monomials not divisible by the
    leading monomial of any element of ``F`` is bounded.

    References
    ==========

    David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
    Algorithms, 3rd edition, p. 230

    """
    return GroebnerBasis(F, *gens, **args).is_zero_dimensional


@public
class GroebnerBasis(Basic):
    """Represents a reduced Groebner basis. """

    def __new__(cls, F, *gens, **args):
        """Compute a reduced Groebner basis for a system of polynomials. """
        options.allowed_flags(args, ['polys', 'method'])

        try:
            polys, opt = parallel_poly_from_expr(F, *gens, **args)
        except PolificationFailed as exc:
            raise ComputationFailed('groebner', len(F), exc)

        from sympy.polys.rings import PolyRing
        ring = PolyRing(opt.gens, opt.domain, opt.order)

        polys = [ring.from_dict(poly.rep.to_dict()) for poly in polys if poly]

        G = _groebner(polys, ring, method=opt.method)
        G = [Poly._from_dict(g, opt) for g in G]

        return cls._new(G, opt)

    @classmethod
    def _new(cls, basis, options):
        obj = Basic.__new__(cls)

        obj._basis = tuple(basis)
        obj._options = options

        return obj

    @property
    def args(self):
        basis = (p.as_expr() for p in self._basis)
        return (Tuple(*basis), Tuple(*self._options.gens))

    @property
    def exprs(self):
        return [poly.as_expr() for poly in self._basis]

    @property
    def polys(self):
        return list(self._basis)

    @property
    def gens(self):
        return self._options.gens

    @property
    def domain(self):
        return self._options.domain

    @property
    def order(self):
        return self._options.order

    def __len__(self):
        return len(self._basis)

    def __iter__(self):
        if self._options.polys:
            return iter(self.polys)
        else:
            return iter(self.exprs)

    def __getitem__(self, item):
        if self._options.polys:
            basis = self.polys
        else:
            basis = self.exprs

        return basis[item]

    def __hash__(self):
        return hash((self._basis, tuple(self._options.items())))

    def __eq__(self, other):
        if isinstance(other, self.__class__):
            return self._basis == other._basis and self._options == other._options
        elif iterable(other):
            return self.polys == list(other) or self.exprs == list(other)
        else:
            return False

    def __ne__(self, other):
        return not self == other

    @property
    def is_zero_dimensional(self):
        """
        Checks if the ideal generated by a Groebner basis is zero-dimensional.

        The algorithm checks if the set of monomials not divisible by the
        leading monomial of any element of ``F`` is bounded.

        References
        ==========

        David A. Cox, John B. Little, Donal O'Shea. Ideals, Varieties and
        Algorithms, 3rd edition, p. 230

        """
        def single_var(monomial):
            return sum(map(bool, monomial)) == 1

        exponents = Monomial([0]*len(self.gens))
        order = self._options.order

        for poly in self.polys:
            monomial = poly.LM(order=order)

            if single_var(monomial):
                exponents *= monomial

        # If any element of the exponents vector is zero, then there's
        # a variable for which there's no degree bound and the ideal
        # generated by this Groebner basis isn't zero-dimensional.
        return all(exponents)

    def fglm(self, order):
        """
        Convert a Groebner basis from one ordering to another.

        The FGLM algorithm converts reduced Groebner bases of zero-dimensional
        ideals from one ordering to another. This method is often used when it
        is infeasible to compute a Groebner basis with respect to a particular
        ordering directly.

        Examples
        ========

        >>> from sympy.abc import x, y
        >>> from sympy import groebner

        >>> F = [x**2 - 3*y - x + 1, y**2 - 2*x + y - 1]
        >>> G = groebner(F, x, y, order='grlex')

        >>> list(G.fglm('lex'))
        [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]
        >>> list(groebner(F, x, y, order='lex'))
        [2*x - y**2 - y + 1, y**4 + 2*y**3 - 3*y**2 - 16*y + 7]

        References
        ==========

        .. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
               Computation of Zero-dimensional Groebner Bases by Change of
               Ordering

        """
        opt = self._options

        src_order = opt.order
        dst_order = monomial_key(order)

        if src_order == dst_order:
            return self

        if not self.is_zero_dimensional:
            raise NotImplementedError("Cannot convert Groebner bases of ideals with positive dimension")

        polys = list(self._basis)
        domain = opt.domain

        opt = opt.clone({
            "domain": domain.get_field(),
            "order": dst_order,
        })

        from sympy.polys.rings import xring
        _ring, _ = xring(opt.gens, opt.domain, src_order)

        for i, poly in enumerate(polys):
            poly = poly.set_domain(opt.domain).rep.to_dict()
            polys[i] = _ring.from_dict(poly)

        G = matrix_fglm(polys, _ring, dst_order)
        G = [Poly._from_dict(dict(g), opt) for g in G]

        if not domain.is_Field:
            G = [g.clear_denoms(convert=True)[1] for g in G]
            opt.domain = domain

        return self._new(G, opt)

    def reduce(self, expr, auto=True):
        """
        Reduces a polynomial modulo a Groebner basis.

        Given a polynomial ``f`` and a set of polynomials ``G = (g_1, ..., g_n)``,
        computes a set of quotients ``q = (q_1, ..., q_n)`` and the remainder ``r``
        such that ``f = q_1*f_1 + ... + q_n*f_n + r``, where ``r`` vanishes or ``r``
        is a completely reduced polynomial with respect to ``G``.

        Examples
        ========

        >>> from sympy import groebner, expand
        >>> from sympy.abc import x, y

        >>> f = 2*x**4 - x**2 + y**3 + y**2
        >>> G = groebner([x**3 - x, y**3 - y])

        >>> G.reduce(f)
        ([2*x, 1], x**2 + y**2 + y)
        >>> Q, r = _

        >>> expand(sum(q*g for q, g in zip(Q, G)) + r)
        2*x**4 - x**2 + y**3 + y**2
        >>> _ == f
        True

        """
        poly = Poly._from_expr(expr, self._options)
        polys = [poly] + list(self._basis)

        opt = self._options
        domain = opt.domain

        retract = False

        if auto and domain.is_Ring and not domain.is_Field:
            opt = opt.clone({"domain": domain.get_field()})
            retract = True

        from sympy.polys.rings import xring
        _ring, _ = xring(opt.gens, opt.domain, opt.order)

        for i, poly in enumerate(polys):
            poly = poly.set_domain(opt.domain).rep.to_dict()
            polys[i] = _ring.from_dict(poly)

        Q, r = polys[0].div(polys[1:])

        Q = [Poly._from_dict(dict(q), opt) for q in Q]
        r = Poly._from_dict(dict(r), opt)

        if retract:
            try:
                _Q, _r = [q.to_ring() for q in Q], r.to_ring()
            except CoercionFailed:
                pass
            else:
                Q, r = _Q, _r

        if not opt.polys:
            return [q.as_expr() for q in Q], r.as_expr()
        else:
            return Q, r

    def contains(self, poly):
        """
        Check if ``poly`` belongs the ideal generated by ``self``.

        Examples
        ========

        >>> from sympy import groebner
        >>> from sympy.abc import x, y

        >>> f = 2*x**3 + y**3 + 3*y
        >>> G = groebner([x**2 + y**2 - 1, x*y - 2])

        >>> G.contains(f)
        True
        >>> G.contains(f + 1)
        False

        """
        return self.reduce(poly)[1] == 0


@public
def poly(expr, *gens, **args):
    """
    Efficiently transform an expression into a polynomial.

    Examples
    ========

    >>> from sympy import poly
    >>> from sympy.abc import x

    >>> poly(x*(x**2 + x - 1)**2)
    Poly(x**5 + 2*x**4 - x**3 - 2*x**2 + x, x, domain='ZZ')

    """
    options.allowed_flags(args, [])

    def _poly(expr, opt):
        terms, poly_terms = [], []

        for term in Add.make_args(expr):
            factors, poly_factors = [], []

            for factor in Mul.make_args(term):
                if factor.is_Add:
                    poly_factors.append(_poly(factor, opt))
                elif factor.is_Pow and factor.base.is_Add and \
                        factor.exp.is_Integer and factor.exp >= 0:
                    poly_factors.append(
                        _poly(factor.base, opt).pow(factor.exp))
                else:
                    factors.append(factor)

            if not poly_factors:
                terms.append(term)
            else:
                product = poly_factors[0]

                for factor in poly_factors[1:]:
                    product = product.mul(factor)

                if factors:
                    factor = Mul(*factors)

                    if factor.is_Number:
                        product = product.mul(factor)
                    else:
                        product = product.mul(Poly._from_expr(factor, opt))

                poly_terms.append(product)

        if not poly_terms:
            result = Poly._from_expr(expr, opt)
        else:
            result = poly_terms[0]

            for term in poly_terms[1:]:
                result = result.add(term)

            if terms:
                term = Add(*terms)

                if term.is_Number:
                    result = result.add(term)
                else:
                    result = result.add(Poly._from_expr(term, opt))

        return result.reorder(*opt.get('gens', ()), **args)

    expr = sympify(expr)

    if expr.is_Poly:
        return Poly(expr, *gens, **args)

    if 'expand' not in args:
        args['expand'] = False

    opt = options.build_options(gens, args)

    return _poly(expr, opt)


def named_poly(n, f, K, name, x, polys):
    r"""Common interface to the low-level polynomial generating functions
    in orthopolys and appellseqs.

    Parameters
    ==========

    n : int
        Index of the polynomial, which may or may not equal its degree.
    f : callable
        Low-level generating function to use.
    K : Domain or None
        Domain in which to perform the computations. If None, use the smallest
        field containing the rationals and the extra parameters of x (see below).
    name : str
        Name of an arbitrary individual polynomial in the sequence generated
        by f, only used in the error message for invalid n.
    x : seq
        The first element of this argument is the main variable of all
        polynomials in this sequence. Any further elements are extra
        parameters required by f.
    polys : bool, optional
        If True, return a Poly, otherwise (default) return an expression.
    """
    if n < 0:
        raise ValueError("Cannot generate %s of index %s" % (name, n))
    head, tail = x[0], x[1:]
    if K is None:
        K, tail = construct_domain(tail, field=True)
    poly = DMP(f(int(n), *tail, K), K)
    if head is None:
        poly = PurePoly.new(poly, Dummy('x'))
    else:
        poly = Poly.new(poly, head)
    return poly if polys else poly.as_expr()
